
CRDTs
From sequential to concurrent executions

Carlos Baquero

INESC TEC & Universidade do Minho, Portugal

Code Mesh London, November 8th 2018

1/30

2/30

The speed of communication in the 19th century
W. H. Harrison’s death

“At 12:30 am on April 4th, 1841 President
William Henry Harrison died of pneumonia
just a month after taking office. The Rich-
mond Enquirer published the news of his
death two days later on April 6th. The North-
Carolina standard newspaper published it on
April 14th. His death wasn’t known of in Los
Angeles until July 23rd, 110 days after it had
occurred.”

Text by Zack Bloom, A Quick History of Digital Communication Before the
Internet. https://eager.io/blog/communication-pre-internet/

Picture by By Albert Sands Southworth and Josiah Johnson Hawes

3/30

The speed of communication in the 19th century
Francis Galton Isochronic Map

4/30

The speed of communication in the 21st century
RTT data gathered via http://www.azurespeed.com

5/30

The speed of communication in the 21st century
If you really like high latencies . . .

Time delay between Mars and Earth
blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/

Delay/Disruption Tolerant Networking
www.nasa.gov/content/dtn

6/30

Latency magnitudes
Geo-replication

λ, up to 50ms (local region DC)

Λ, between 100ms and 300ms (inter-continental)

No inter-DC replication

Client writes observe λ latency

Planet-wide geo-replication

Replication techniques versus client side write latency ranges

Consensus/Paxos [Λ, 2Λ] (with no divergence)

Primary-Backup [λ,Λ] (asynchronous/lazy)

Multi-Master λ (allowing divergence)

7/30

EC and CAP for Geo-Replication

Eventually Consistent. CACM 2009, Werner Vogels

In an ideal world there would be only one consistency model:
when an update is made all observers would see that update.

Building reliable distributed systems at a worldwide scale
demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems – data consistency,
system availability, and tolerance to network partition – only two
can be achieved at any given time.

CRDTs provide support for partition-tolerant high availability

8/30

From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential execution

Ops O o // p // q

Time //

We have an ordered set (O, <). O = {o, p, q} and o < p < q

8/30

From sequential to concurrent executions

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential execution

Ops O o // p // q

Time //

We have an ordered set (O, <). O = {o, p, q} and o < p < q

9/30

From sequential to concurrent executions

EC Multi-master (or active-active) can expose concurrency

Concurrent execution

p // q

��
Ops O o

??

r

s

77

Time //

Partially ordered set (O,≺). o ≺ p ≺ q ≺ r and o ≺ s ≺ r
Some ops in O are concurrent: p ‖ s and q ‖ s

10/30

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT

Replicas keep increasing local views of an evolving distributed polog

Any query, at replica i , can be expressed from local polog Oi

Example: Counter at i is |{inc | inc ∈ Oi}| − |{dec | dec ∈ Oi}|

CRDTs are efficient representations that follow some general rules

10/30

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT

Replicas keep increasing local views of an evolving distributed polog

Any query, at replica i , can be expressed from local polog Oi

Example: Counter at i is |{inc | inc ∈ Oi}| − |{dec | dec ∈ Oi}|

CRDTs are efficient representations that follow some general rules

10/30

Design of Conflict-Free Replicated Data Types

A partially ordered log (polog) of operations implements any CRDT

Replicas keep increasing local views of an evolving distributed polog

Any query, at replica i , can be expressed from local polog Oi

Example: Counter at i is |{inc | inc ∈ Oi}| − |{dec | dec ∈ Oi}|

CRDTs are efficient representations that follow some general rules

11/30

Principle of permutation equivalence

If operations in sequence can commute, preserving a given result,
then under concurrency they should preserve the same result

Sequential

inc(10) // inc(35) // dec(5) // inc(2)

dec(5) // inc(2) // inc(10) // inc(35)

Concurrent

inc(35)

&&
inc(10)

88

&&

inc(2)

dec(5)

88

You guessed: Result is 42

12/30

Implementing Counters
Example: CRDT PNCounters

A inc(35)

&&
B inc(10)

88

&&

inc(2)

C dec(5)

88

Lets track total number of incs and decs done at each replica

{A(incs, decs), . . . ,C (. . . , . . .)}

13/30

Implementing Counters
Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A {A(35, 0),B(10, 0)}

++
B {B(10, 0)}

66

((

{A(35, 0),B(12, 0),C (0, 5)}

C {B(10, 0),C (0, 5)}

33

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

13/30

Implementing Counters
Example: CRDT PNCounters

Separate positive and negative counts are kept per replica

A {A(35, 0),B(10, 0)}

++
B {B(10, 0)}

66

((

{A(35, 0),B(12, 0),C (0, 5)}

C {B(10, 0),C (0, 5)}

33

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

14/30

Registers

Registers are an ordered set of write operations

Sequential execution

A wr(x) // wr(j) // wr(k) // wr(x)

Sequential execution under distribution

A wr(x)

%%

wr(x)

B wr(j) // wr(k)

99

Register value is x , the last written value

15/30

Implementing Registers
Naive Last-Writer-Wins

CRDT register implemented by attaching local wall-clock times

Sequential execution under distribution

A (11:00)x

''

(11:30)?

##
B (12:02)j // (12:05)k

77

?

Problem: Wall-clock on B is one hour ahead of A

Value x might not be writeable again at A since 12:05 > 11:30

16/30

Registers
Sequential Semantics

Register shows value v at replica i iff

wr(v) ∈ Oi

and

@wr(v ′) ∈ Oi · wr(v) < wr(v ′)

17/30

Preservation of sequential semantics

Concurrent semantics should preserve the sequential semantics

This also ensures correct sequential execution under distribution

18/30

Multi-value Registers

Concurrency semantics shows all concurrent values

{v | wr(v) ∈ Oi ∧ @wr(v ′) ∈ Oi · wr(v) ≺ wr(v ′)}

Concurrent execution

A wr(x)

%%

// wr(y) // {y , k} // wr(m) // {m}

B wr(j) // wr(k)

99

Dynamo shopping carts are multi-value registers with payload sets

The m value could be an application level merge of values y and k

19/30

Implementing Multi-value Registers

Concurrency can be preciselly tracked with version vectors

Concurrent execution (version vectors)

A [1, 0]x

%%

// [2, 0]y // [2, 0]y , [1, 2]k // [3, 2]m

B [1, 1]j // [1, 2]k

66

Metadata can be compressed with a common causal context and a
single scalar per value (dotted version vectors)

20/30

Use case: Registers in Redis CRDB
LWW arbitration

Multi-value registers allows executions leading to concurrent values

Presenting concurrent values is at odds with the sequential API

Redis CRDB both tracks causality and registers wall-clock times

Querying uses Last-Writer-Wins selection among concurrent values

This preserves correctness of sequential semantics

A value with clock 12:05 can still be causally overwritten at 11:30

21/30

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

21/30

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

21/30

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

21/30

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

21/30

Sets
Sequential Semantics

Consider add and rmv operations

X = {. . .}, add(a) −→ add(c) we observe that a, c ∈ X

X = {. . .}, add(c) −→ rmv(c) we observe that c 6∈ X

In general, given Oi , the set has elements

{e | add(e) ∈ Oi ∧ @rmv(e) ∈ Oi · add(e) < rmv(e)}

22/30

Sets
Concurrency Semantics

Problem: Concurrently adding and removing the same element

Concurrent execution

A add(x)

%%

// rmv(x) // {?} // add(x) // {x}

B rmv(x) // add(x)

::

23/30

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered
by an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

23/30

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered
by an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

23/30

Concurrency Semantics
Add-Wins Sets

Let’s choose Add-Wins

Consider a set of known operations Oi , at node i , that is ordered
by an happens-before partial order ≺. Set has elements

{e | add(e) ∈ Oi ∧ @ rmv(e) ∈ Oi · add(e) ≺ rmv(e)}

Is this familiar?

The sequential semantics applies identical rules on a total order

24/30

Equivalence to a sequential execution?
Add-Wins Sets

Can we always explain a concurrent execution by a sequential one?

Concurrent execution

A {x , y} // add(y) // rmv(x) // {y} //

##

{x , y}

B {x , y} // add(x) // rmv(y) // {x} //

;;

{x , y}

Two (failed) sequential explanations

H1 {x , y} // . . . // rmv(x) // {6 x , y}

H2 {x , y} // . . . // rmv(y) // {x , 6 y}

Concurrent executions can have richer outcomes

25/30

Concurrency Semantics
Remove-Wins Sets

Alternative: Let’s choose Remove-Wins

Xi
.

= {e | add(e) ∈ Oi ∧ ∀ rmv(e) ∈ Oi · rmv(e) ≺ add(e)}

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

25/30

Concurrency Semantics
Remove-Wins Sets

Alternative: Let’s choose Remove-Wins

Xi
.

= {e | add(e) ∈ Oi ∧ ∀ rmv(e) ∈ Oi · rmv(e) ≺ add(e)}

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

26/30

Choice of semantics

Design freedom is limited by preservation of sequential semantics

Delaying choice of semantics to query time

A CRDT Set data type could store enough information to allow a
parametrized query that shows either Add-Wins or Remove-Wins

This flexibility might have a metadata cost

27/30

CRDTs in Practice

Implementation styles

State-based: Full state dissemination; merging of replicas

Alternative: Disseminate small state deltas, δ-states
States can be merged multiple times

Operation-based: Reliable dissemination; known membership

Operations applied only once

Infrastructure

Datatype libraries + Dissemination/Gossip Middleware

Databases with rich APIs and CRDT merge logic

28/30

CRDTs in Practice

Use-case Company/Project CRDT model

Distributed Applications Akka δ State-based

Distributed Applications Lasp δ State-based

Distributed Applications Eventuate Op-based

P2P Collaborative Editing IPFS Op-based

Distributed DB Riak State-based

Distributed DB Redis Both

Distributed DB Hazelcast State-based

Dist. DB, HAT transactions Antidote Op-based

29/30

Take home message

Concurrent executions are needed to deal with latency

Behaviour changes when moving from sequential to concurrent

Road to accommodate transition:

Permutation equivalence

Preserving sequential semantics

Concurrent executions lead to richer outcomes

CRDTs provide sound guidelines and encode policies

30/30

Thanks and Questions

Reference

Conflict-Free Replicated Data Types. N. Preguiça, M. Shapiro, C.
Baquero. Encyclopedia of Big Data Technologies, Springer Verlag

Thanks to LightKone (https://www.lightkone.eu) for support,
Redis Labs (https://redislabs.com) for their support and
inputs on an early version, and my colleagues for early feedback

Glad to address any questions

Carlos Baquero, cbm@di.uminho.pt, @xmal

#Redis #RedisConf

