CRDTs

From sequential to concurrent executions

Carlos Baquero

INESC TEC & Universidade do Minho, Portugal

Code Mesh London, November 8th 2018

うくぐ 1/30

・ロト ・御ト ・ヨト ・ヨト 三田

Universidade do Minho

The speed of communication in the 19th century W. H. Harrison's death

"At 12:30 am on April 4th, 1841 President William Henry Harrison died of pneumonia just a month after taking office. The Richmond Enquirer published the news of his death two days later on April 6th. The North-Carolina standard newspaper published it on April 14th. His death wasn't known of in Los Angeles until July 23rd, 110 days after it had occurred."

Text by Zack Bloom, A Quick History of Digital Communication Before the Internet. https://eager.io/blog/communication-pre-internet/ Picture by By Albert Sands Southworth and Josiah Johnson Hawes

The speed of communication in the 19th century Francis Galton Isochronic Map

The speed of communication in the 21st century RTT data gathered via http://www.azurespeed.com

The speed of communication in the 21st century If you really like high latencies ...

Time delay between Mars and Earth

blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/

Delay/Disruption Tolerant Networking www.nasa.gov/content/dtn

• λ , up to 50ms (local region DC)

■ A, between 100ms and 300ms (inter-continental)

No inter-DC replication

Client writes observe λ latency

Planet-wide geo-replication

Replication techniques versus client side write latency ranges

Consensus/Paxos $[\Lambda, 2\Lambda]$ Primary-Backup $[\lambda, \Lambda]$ Multi-Master λ

(with no divergence)
(asynchronous/lazy)
(allowing divergence)

EC and CAP for Geo-Replication

Eventually Consistent. CACM 2009, Werner Vogels

- In an ideal world there would be only one consistency model: when an update is made all observers would see that update.
- Building reliable distributed systems at a worldwide scale demands trade-offs between consistency and availability.

CAP theorem. PODC 2000, Eric Brewer

Of three properties of shared-data systems – data consistency, system availability, and tolerance to network partition – only two can be achieved at any given time.

CRDTs provide support for partition-tolerant high availability

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Ops O	$o \longrightarrow p \longrightarrow q$	
Time		

We have an ordered set (O, <). $O = \{o, p, q\}$ and o

Consensus provides illusion of a single replica

This also preserves (slow) sequential behaviour

Sequential e	execution
--------------	-----------

$\longrightarrow p \longrightarrow q$

Time	_	—	—	—	—	—	—	≻

We have an ordered set (O, <). $O = \{o, p, q\}$ and o

EC Multi-master (or active-active) can expose concurrency

Partially ordered set (O, \prec) . $o \prec p \prec q \prec r$ and $o \prec s \prec r$ Some ops in O are concurrent: $p \parallel s$ and $q \parallel s$ A partially ordered log (polog) of operations implements any CRDT Replicas keep increasing local views of an evolving distributed polog Any query, at replica *i*, can be expressed from local polog O_i Example: Counter at *i* is $|\{inc | inc \in O_i\}| - |\{dec | dec \in O_i\}|$ CRDTs are efficient representations that follow some general rules

A partially ordered log (polog) of operations implements any CRDT Replicas keep increasing local views of an evolving distributed polog Any query, at replica *i*, can be expressed from local polog O_i Example: Counter at *i* is $|\{inc | inc \in O_i\}| - |\{dec | dec \in O_i\}|$ CRDTs are efficient representations that follow some general rules

A partially ordered log (polog) of operations implements any CRDT Replicas keep increasing local views of an evolving distributed polog Any query, at replica *i*, can be expressed from local polog O_i Example: Counter at *i* is $|\{inc | inc \in O_i\}| - |\{dec | dec \in O_i\}|$ CRDTs are efficient representations that follow some general rules

Principle of permutation equivalence

If operations in sequence can commute, preserving a given result, then under concurrency they should preserve the same result

Sequential

$$inc(10) \longrightarrow inc(35) \longrightarrow dec(5) \longrightarrow inc(2)$$

 $dec(5) \longrightarrow inc(2) \longrightarrow inc(10) \longrightarrow inc(35)$

Concurrent

You guessed: Result is 42

Implementing Counters Example: CRDT PNCounters

Lets track total number of incs and decs done at each replica

$$\{A(incs, decs), \ldots, C(\ldots, \ldots)\}$$

<ロト < 回 > < 目 > < 目 > < 目 > の へ ? 12/30

Separate positive and negative counts are kept per replica

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 13/30

Separate positive and negative counts are kept per replica

Joining does point-wise maximums among entries (semilattice)

At any time, counter value is sum of incs minus sum of decs

Registers are an ordered set of write operations

Sequential execution

$$A \qquad \operatorname{wr}(x) \longrightarrow \operatorname{wr}(j) \longrightarrow \operatorname{wr}(k) \longrightarrow \operatorname{wr}(x)$$

Sequential execution under distribution

$$\begin{array}{ccc} A & wr(x) & wr(x) \\ B & wr(j) \longrightarrow wr(k) \end{array}$$

Register value is x, the last written value

CRDT register implemented by attaching local wall-clock times

Problem: Wall-clock on B is one hour ahead of A

Value x might not be writeable again at A since 12:05 > 11:30

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q ℃ 15/30

Register shows value v at replica i iff

$$wr(v) \in O_i$$

and

$$\nexists \mathsf{wr}(v') \in O_i \cdot \mathsf{wr}(v) < \mathsf{wr}(v')$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 16/30

Concurrent semantics should preserve the sequential semantics

This also ensures correct sequential execution under distribution

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Concurrency semantics shows all concurrent values

$$\{v \mid \mathsf{wr}(v) \in O_i \land \nexists \mathsf{wr}(v') \in O_i \cdot \mathsf{wr}(v) \prec \mathsf{wr}(v')\}$$

Dynamo shopping carts are multi-value registers with payload sets

The m value could be an application level merge of values y and k

Concurrency can be preciselly tracked with version vectors

Concurrent execution (version vectors)

$$A \qquad [1,0]x \longrightarrow [2,0]y \longrightarrow [2,0]y, [1,2]k \longrightarrow [3,2]m$$
$$B \qquad [1,1]j \longrightarrow [1,2]k$$

Metadata can be compressed with a common causal context and a single scalar per value (dotted version vectors)

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 へ C 19/30

Multi-value registers allows executions leading to concurrent values

Presenting concurrent values is at odds with the sequential API

Redis CRDB both tracks causality and registers wall-clock times

Querying uses Last-Writer-Wins selection among concurrent values

This preserves correctness of sequential semantics

A value with clock 12:05 can still be causally overwritten at 11:30

 $X = \{\ldots\}, \ \mathsf{add}(\mathsf{a}) \longrightarrow \mathsf{add}(\mathsf{c}) \ \mathrm{we \ observe \ that} \ \mathsf{a}, \mathsf{c} \in \mathsf{X}$

 $X = \{\ldots\}, \text{ add}(c) \longrightarrow \mathsf{rmv}(c) \text{ we observe that } c \not\in X$ In general, given O_i , the set has elements

 $\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) < \mathsf{rmv}(e)\}$

 $X = \{\ldots\}, \ \mathsf{add}(\mathsf{a}) \longrightarrow \mathsf{add}(\mathsf{c}) \ \mathrm{we \ observe \ that} \ \mathsf{a}, \mathsf{c} \in \mathsf{X}$

 $X = \{\ldots\}, \text{ add}(c) \longrightarrow \operatorname{rmv}(c) \text{ we observe that } c \notin X$ In general, given O_i , the set has elements

 $\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) < \mathsf{rmv}(e)\}$

 $X = \{\ldots\}, \ \mathsf{add}(\mathsf{a}) \longrightarrow \mathsf{add}(\mathsf{c}) \ \mathrm{we \ observe \ that} \ \mathsf{a}, \mathsf{c} \in \mathsf{X}$

 $X = \{\ldots\}, \text{ add}(c) \longrightarrow rmv(c) \text{ we observe that } c \notin X$

In general, given O_i , the set has elements

 $\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) < \mathsf{rmv}(e)\}$

 $X = \{\ldots\}, \ \mathsf{add}(\mathsf{a}) \longrightarrow \mathsf{add}(\mathsf{c}) \ \mathrm{we \ observe \ that} \ \mathsf{a}, \mathsf{c} \in \mathsf{X}$

 $X = \{\ldots\}, \text{ add}(c) \longrightarrow \mathsf{rmv}(c) \text{ we observe that } c \notin X$

In general, given O_i , the set has elements

 $\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) < \mathsf{rmv}(e)\}$

 $X = \{\ldots\}, \ \mathsf{add}(\mathsf{a}) \longrightarrow \mathsf{add}(\mathsf{c}) \ \mathrm{we \ observe \ that} \ \mathsf{a}, \mathsf{c} \in \mathsf{X}$

 $X = \{\ldots\}, \text{ add}(c) \longrightarrow \mathsf{rmv}(c) \text{ we observe that } c \notin X$ In general, given O_i , the set has elements

 $\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) < \mathsf{rmv}(e)\}$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 21/30

Problem: Concurrently adding and removing the same element

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ ? 22/30

Let's choose Add-Wins

Consider a set of known operations O_i , at node *i*, that is ordered by an *happens-before* partial order \prec . Set has elements

$$\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \ \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) \prec \mathsf{rmv}(e)\}$$

Is this familiar?

The sequential semantics applies identical rules on a total order

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let's choose Add-Wins

Consider a set of known operations O_i , at node *i*, that is ordered by an *happens-before* partial order \prec . Set has elements

$$\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \ \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) \prec \mathsf{rmv}(e)\}$$

Is this familiar?

The sequential semantics applies identical rules on a total order

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let's choose Add-Wins

Consider a set of known operations O_i , at node *i*, that is ordered by an *happens-before* partial order \prec . Set has elements

$$\{e \mid \mathsf{add}(e) \in \mathsf{O}_i \ \land \nexists \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{add}(e) \prec \mathsf{rmv}(e)\}$$

Is this familiar?

The sequential semantics applies identical rules on a total order

Equivalence to a sequential execution? Add-Wins Sets

Can we always explain a concurrent execution by a sequential one?

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ E りへで 24/30

Concurrent execution

$$A \quad \{x, y\} \longrightarrow \mathsf{add}(y) \longrightarrow \mathsf{rmv}(x) \longrightarrow \{y\} \longrightarrow \{x, y\}$$
$$B \quad \{x, y\} \longrightarrow \mathsf{add}(x) \longrightarrow \mathsf{rmv}(y) \longrightarrow \{x\} \longrightarrow \{x, y\}$$

Two (failed) sequential explanations

$$H1 \qquad \{x, y\} \longrightarrow \ldots \longrightarrow \mathsf{rmv}(x) \longrightarrow \{\not x, y\}$$

$$H2 \qquad \{x, y\} \longrightarrow \ldots \longrightarrow \mathsf{rmv}(y) \longrightarrow \{x, \not y\}$$

Concurrent executions can have richer outcomes

Alternative: Let's choose Remove-Wins

$X_i \doteq \{e \mid \mathsf{add}(e) \in \mathsf{O}_i \ \land \forall \ \mathsf{rmv}(e) \in \mathsf{O}_i \ \cdot \,\mathsf{rmv}(e) \prec \mathsf{add}(e)\}$

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

Alternative: Let's choose Remove-Wins

$$X_i \doteq \{e \mid \mathsf{add}(e) \in \mathsf{O}_i \land \forall \mathsf{rmv}(e) \in \mathsf{O}_i \cdot \mathsf{rmv}(e) \prec \mathsf{add}(e)\}$$

Remove-Wins requires more metadata than Add-Wins

Both Add and Remove-Wins have same semantics in a total order

They are different but both preserve sequential semantics

Design freedom is limited by preservation of sequential semantics

Delaying choice of semantics to query time

A CRDT Set data type could store enough information to allow a parametrized query that shows either Add-Wins or Remove-Wins

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ^Q 26/30

This flexibility might have a metadata cost

Implementation styles

- State-based: Full state dissemination; merging of replicas
 - Alternative: Disseminate small state deltas, δ -states
 - States can be merged multiple times
- Operation-based: Reliable dissemination; known membership

Operations applied only once

Infrastructure

- Datatype libraries + Dissemination/Gossip Middleware
- Databases with rich APIs and CRDT merge logic

Use-case	Company/Project	CRDT model
Distributed Applications	Akka	δ State-based
Distributed Applications	Lasp	δ State-based
Distributed Applications	Eventuate	Op-based
P2P Collaborative Editing	IPFS	Op-based
Distributed DB	Riak	State-based
Distributed DB	Redis	Both
Distributed DB	Hazelcast	State-based
Dist. DB, HAT transactions	Antidote	Op-based

- Concurrent executions are needed to deal with latency
- Behaviour changes when moving from sequential to concurrent

Road to accommodate transition:

- Permutation equivalence
- Preserving sequential semantics
- Concurrent executions lead to richer outcomes

CRDTs provide sound guidelines and encode policies

Thanks and Questions

Reference

Conflict-Free Replicated Data Types. N. Preguiça, M. Shapiro, C. Baquero. Encyclopedia of Big Data Technologies, Springer Verlag

Thanks to LightKone (https://www.lightkone.eu) for support, Redis Labs (https://redislabs.com) for their support and inputs on an early version, and my colleagues for early feedback

Glad to address any questions

Carlos Baquero, cbm@di.uminho.pt, @xmal

Universidade do Minho

かくで 30/30