Introduction to AI Engineering

Code Sync, London, 2018 Garrett Smith Founder, Guild AI

guild.ai

AI

Artificial General Intelligence (AGI)

Photographer: Joe Mehling

The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves.

J. McCarthy et al.; Aug. 31, 1955

Source: https://opentechai.blog/2017/11/10/navigating-in-the-ai-sciences-jungle/

AI ≈ Intelligent Systems

"Hyper-automation"

Data Science

Machine Learning

Source: Domingos, Pedro. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World.

	Symbolist	Connectionist	Evolutionary	Bayesian	Analogizer
Representation	Logic	Neural Networks	Genetic Programs	Graphical Models	Support Vectors
Evaluation	Accuracy	Squared Error	Fitness	Posterior Probability	Margin
Optimization	Inverse Deduction	Gradient Descent	Generic Search	Probabilistic Inference	Constrained Optimization

Source: Domingos, Pedro. *The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World.*

arXiv - Artificial Intelligence (cs.AI)

arXiv - Machine Learning (cs.LG)

arXiv - Computer Vision and Pattern Recognition (cs.CV)

Source: Ian Goodfellow

Deep Learning

Artificial Intelligence: Applications, Domains, and Methods

	Anomaly Detection		Original
Affective Computing	Provinally Detection	Clustering	
	Collaborative Filtering	K	Data Mining
Considius Computing	Computer Audition	Deep Learning	
Cognitive Computing		Dimensionality Paduction	
Computational Discovery	Computer Vision	Dimensionality Reduction	
Image/lideo Applitice		Networks/Graphical Models	
image video Analytics			Machine Learning
Language Translation	Motif/Pattern Recognition	Online/Reinforcement Learning	
Natural Text Generation		Pattern Similarity	
Navination		Probabilistic Modeling	
Targaton	Natural Language Processing		
Recommender Systems		Regression	Statistics
	//	rigroundi	
Speech Recognition	Path/Motion Planning	Search Algorithms	

Source: Lux Research, Inc. www.luxresearchinc.com

Artificial Intelligence: Applications, Domains, and Methods

	Anomaly Detection		Unsharp Mask
Affective Computing	Anomaly Detection	Clustering	
	Collaborative Filtering		Data Mining
	Computer Audition	Deep Learning	
Cognitive Computing		\sim	
Computational Discovery	Computer Vision	Dimensionality Reduction	
		Networks/Graphical Models	
image/video Analytics			Machine Learning
Language Translation	Motif/Pattern Recognition	Online/Reinforcement Learning	
Natural Text Generation		Pattern Similarity	
Navination		Probabilistic Modeling	
Havgavit	Natural Language Processin	9	
Recommender Systems		Regression	Statistics
Speech Recognition	Path/Motion Planning		
		Search Algorithms	

Source: Lux Research, Inc. www.luxresearchinc.com

Artificial Intelligence: Applications, Domains, and Methods

	Assessed a Data alian	Neural Enhance	
Affective Computing	Anomaly Detection	Clustering	
	Collaborative Filtering		Date Mining
Cognitive Computing	Computer Audition	Deep Learning	Data winning
		Dimensionality Reduction	
Computational Discovery	Computer Vision		
Image/Video Analytics		Networks/Graphical Models	
Language Translation	Motif/Pattern Recognition	Online/Reinforcement Learning	Machine Learning
Natural Text Generation		Pattern Similarity	
Navigation		Probabilistic Modeling	
rengenon	Natural Language Processing		
Recommender Systems	-11	Regression	Statistics
		Tregression	
Speech Recognition	Path/Motion Planning		
		Search Algorithms	

Source: Lux Research, Inc. www.luxresearchinc.com

alexjc/neural-enhance on GitHub

Example #1 -- Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens.

As seen on TV! What if you could increase the resolution of your photos using technology from CSI laboratories? Thanks to deep learning and #NeuralEnhance, it's now possible to train a neural network to zoom in to your images at 2x or even 4x. You'll get even better results by increasing the number of neurons or training with a dataset similar to your low resolution image.

Methodology

Three roles

Research scientist Research engineer Software/system engineer

Content funnel

Best Paper - CVPR 2018

Taskonomy: Disentangling Task Transfer Learning

Amir R. Zamir^{1,2} Alexander Sax^{1*} William Shen^{1*} Leonidas Guibas¹ Jitendra Malik² Silvio Savarese¹

¹ Stanford University ² University of California, Berkeley

http://taskonomy.vision/

Abstract

Do visual tasks have a relationship, or are they unrelated? For instance, could having surface normals simplify estimating the depth of an image? Intuition answers these questions positively, implying existence of a structure among visual tasks. Knowing this structure has notable values; it is the concept underlying transfer learning and provides a principled way for identifying redundancies across tasks, e.g., to seamlessly reuse supervision among related tasks or solve many tasks in one system without piling up the complexity.

We proposes a fully computational approach for modeling the structure of space of visual tasks. This is done via finding (first and higher-order) transfer learning dependencies across a dictionary of twenty six 2D, 2.5D, 3D, and semantic tasks in a latent space. The product is a computational taxonomic map for task transfer learning. We study the consequences of this structure, e.g. nontrivial emerged

8328v1 [cs.CV] 23 Apr 2018

StanfordVL/taskonomy on GitHub

TASK BANK: A Unified Bank of 25 Visual Estimators

This repository shares a unified bank of pretrained models for 25 vision tasks spanning a wide range of 2D, 3D, and semantic problems. Given a query image, the produced 25 estimations give a broad visual understanding useful for different

http://taskonomy.stanford.edu/tasks/

Task Bank Demo

We provide a demo where you can upload (or use a presenced image) and visualize the outputs of different task-specific networks. The pretrained models in our TASK BANK can be downloaded here along with visualizations code.

Our task-specific networks were trained on 3 million images of varied indoor scenes. You can see the statistics of the training set here. If your query image severy deviates from these statistics, the performance is expected to degrade. Processing usually takes around 10 seconds.

Vanishing Points

Image Reshading

2D Texture Edges

Unsupervised 2.5D Segm. Room Layout

Languages and Libraries

Systems

Hard to be an expert in everything

The Floating City Problem

"The Data, Stupid"

Individuals

Build something small to start Find a mentor or community for help Attend local area meetups Build something else, this time with others Follow your nose

Organizations

Lower expectations

Select a senior engineer to spearhead a project

Select a problem that has multiple known solutions

Ship something non-critical

Expect to throw-away, but to learn

Books

The Master Algorithm, Pedro Domingos *Deep Learning with Python*, Francois Chollet *Deep Learning*, Ian Goodfellow

Starting Projects

Object Detection / Segmentation Natural Language Processing Generative Networks Speech Recognition

Build Stuff

Starting Projects

Object Detection / Segmentation Natural Language Processing Generative Networks Speech Recognition

guild.ai