
UNORTHORDOX DESIGN PATTERNS IN RABBITMQ

AYANDA DUBE

ERLANG SOLUTIONS

ACKNOWLEDGEMENTS

 Erlang Solutions conferences (Gurpreet & crew)

 Joe Armstrong - the legacy

OVERVIEW: RABBITMQ

 Client l ibraries (Java, .Net, Objective-C, JMS, PHP,)

 Erlang & Elixir AMQP implementation

 Been around for a while - over 10years

 More than 35,000 known deployments

P

P

P

C

C

C

C

P

mediationP

basic.publish

rabbit
queue

process

frame

route

QueuePid(s)

rabbit
channel

rabbit
message

store
rabbit

exchange

delivery [M, QueuePid]

#delivery{}

delivery_attempt

publish

INTERNAL
API C

socket
reader

OVERVIEW: INTERNALS

Mnesia

#basic.publish{}

#basic.publish{}

OVERVIEW: ROADMAP

SUPERVISION

INITIALIZATION

PROCESSES,
BEHAVIOURS

APPLICATIONS

rabbit
application

plugins

INITIALIZATION: BOOTSTEPS

 Init ial isation: boot steps

 Loosely coupled application procedures/steps

 Ordered execution of init ial isation steps

 Defined and set as module attributes

 Pre-conditions and post-conditions

 Cleanup capabil it ies on shutdown

 Alternative to OTP application start-phases

INITIALIZATION: BOOTSTEPS

erl -s rabbit

run_boot_steps/0

Applications

get ALL module boot_step
attributes

build directed acyclic
graph G

Vertex = StepName
Edge (Forward) = requires
Edge (Reverse) = enables

Topological Ordering of G

find boot steps

acquire loaded applications App in
loaded Apps?

execute M:F(A)

Get Module’s
source App

Result == ok?

ok

ok

Result

{error, Reason}

digraph

INITIALIZATION: BOOTSTEPS

INITIALIZATION: BOOTSTEPS

INITIALIZATION: BOOTSTEPS

STEP-3

STEP-4

STEP-1

STEP-6

STEP-2

STEP-5

STEP-7

STEP-8

STEP-9

[STEP-1, STEP-6, STEP-7, STEP-8, STEP-9, STEP-5, STEP-4, STEP-2, STEP-3]

 Topologically sorted: digraph_uti ls:topsort(G)

SUPERVISION

SUPERVISION

INITIALIZATION

PROCESSES,
BEHAVIOURS

APPLICATIONS

rabbit
application

plugins

SUPERVISORS: SUPERVISOR2

 Extension of OTP supervisor

 Find child uti l i t ies, …

 Intrinsic restart type (restarts on abnormal exists)

• I f child exists normally, sup also exits normally

 Delayed restart types, e.g. { intrinsic, Delay}

• Sup continues after Delay to restart child if

 MaxRestarts and MaxTime were exceeded

SUPERVISORS: MIRRORED SUPERVISOR

 Multiple supervisors within a single process group

 Child specif ications retained in Mnesia

 Processes than need to exist once in a cluster

 Low state footprint

 Process recovery on separate node in case of node

 fai lure

 {global, Name} registration not supported

SUPERVISORS: MIRRORED SUPERVISOR

start_link/5

mirrored_supervisor:start_link/{4, 5}

{ global, _ }

throw(badarg)

init(Mod, Args)

simple_one_for_one

Start Overall Sup

throw(badarg)

overall
sup

start delegate & mirroring

delegate
sup mirroring

call(MirroringPid ! { init, Pid })

{ok, Pid}

get child (mirroring)

Reply == ok

{ ok, Pid }

start_link/2

mirrored_supervisor_sups:init/1init

delegate

supervisor2:start_link/2

{ ok, {RestartSpec, [] } }

overall

mirrored_supervisor_sups:init/1

Mod:init/1
{ok, {RestartSpec, ChildSpecs}}

validate restart
strategy

RestartSpec [Group, TxFun, ChildSpecs]

RestartSpec => {one_for_one, 1200, 60}
e.g federation_link_exchange_sup

[Group, TxFun, Mod, Args]
[Name, Group, TxFun, Mod, Args]

validate Name
Y

N

Y

N

1

2

SUPERVISORS: MIRRORED SUPERVISOR

start_internal/3

mirrored_supervisor:start_internal/3

gen_server2:start_link/3

number of child-specs,N

mirroring
[Group, TxFun, ChildSpecs] = Args

[?MODULE, Args, {timeout, infinity}]

init mirrored_supervisor:init/1

{ Id, _ , _ , _ , _ , _ }

L = lists:seq(1, N)

zip(Child-IDs, L)

[1, ……, NChildSpecs]

[{ Id-1, 1}, {Id-2, 2}, {Id-3, 3}, …]ChildOrder

ChildOrder

#state{ group = Group,
 tx_fun = TxFun,
 initial_childspecs = ChildSpecs,

 child_order = ChildOrder }

{ok, #state{ } }

mirroring
{init, OverallPid}

handle_call({init, Overall}, ..)

pg2:create(Group)

pg2:join(Group, OverallPid)

get rest of pg2 group
members

pg2:get_members(Group)
— — [OverallPid]

Rest = []

lookup Group ChildSpecs

#mirrored_sup_child_specs {
key = { Group, ‘_’ }
childspec = $1

mirroring_pid = ‘_’ }

delete(?TAB, { Group, Id })
{ Id, _ , _ , _ , _ , _ }

foreach ChildSpec

ok

TxFun

2

true

SUPERVISORS: MIRRORED SUPERVISOR
get mirroring child

[OverallPid1, OverallPid2, …]

foreach

MPid monitor OverallPid
cast(MPid, {ensure_monitoring, OverallPid})

MPid

get delegate sup

Monitor DelegateSup Current mirroring server

mirroring server, monitors ALL Group OverallPid

#state{ overall = OverallPid,
 delegate = Delegate }

Update State

OverallPid

foreach

ChildSpec

Pid =
OverallPid?

#mirrored_sup_child_specs {
mirroring_pid = Pid }

read {Group, Id} write ChildSpec

delegate_sup
alive

get delegate sup
already started

dead

DelegateSup Pid

[S]

[]

Y

N
DelegateSup Pid

Result

start

Pid

Pid

start

Pid

start_child(DelegateSup,
ChildSpec)

already_in_mnesia

{ ok, Pid }

in Group

{error, already_present}

{reply, ok, State}

accumulated

accumulated

SUPERVISORS: MIRRORED SUPERVISOR

Delegate
Sup

Mirroring
Server

Overall
Sup

child-1

#mirrored_sup_child_specs {
key = { Group, Id }

childspec = ChildSpec,

mirroring_pid = Overall }

#state{ overall = Overall,

 tx_fun = TxFun,

 initial_childspecs = ChildSpecs,

 child_order = ChildOrder }

 group = Group,

SUPERVISOR API CALLS

{'DOWN', Ref, process, Pid, Info}

• Get NewOverallPID from PG2

• Update all OldOverall ChildSpecs

• Restore child-ordering
• Start child specs

• If current Overall of mirror is head of list

in MNESIA, with NewOverallPID

Overall
Sup

Overall
Sup

monitors

start_child/2

delete_child/2
restart_child/2
terminate_child/2
which_children/1
count_children/1

mnesia

child-N

SUPERVISORS: MIRRORED SUPERVISOR

 Federation l ink top-level supervisors

PROCESSES & BEHAVIOURS

SUPERVISION

INITIALIZATION

PROCESSES,
BEHAVIOURS

APPLICATIONS

rabbit
application

plugins

PROCESSES & BEHAVIOURS: GEN-SERVER-2

 Optimised selective receives - internal buffer
 extending (& draining) the message queue

 Additional callbacks - priorit ised call , casts & info

 Pre- and Post- hibernation callbacks

 Backoff capabil it ies for delayed hibernation
and variable t imeouts

 Dynamic switching of callbacks (become)

 Debugging and formatting capabil it ies

PROCESSES & BEHAVIOURS: CREDIT FLOW

 Flow control on peer Erlang processes

 Lightweight - based on process dictionary

 Single control Erlang message (on demand)

 Simple, effective principle of operation

• Sender granted credit by receiver, to send more

• Sender blocks i f i t runs out of credit

• Transceivers cannot grant more credit i f blocked

 {Init ialCredit, MoreCreditAfter}

PROCESSES & BEHAVIOURS: CREDIT FLOW

default credit

credit_flow:send/1

lookup {credit_from, From}

block From

process

emit blocked event

lookup

{InitialCredit, _MoreCreditAfter}

get(credit_flow_default_credit)

get from app env & cache

put(credit_flow_default_credit)

get({credit_from, From})

credit == 1 ?

process_info
from
timestamp

set blocked_at (timestamp)

put(credit_blocked_at, TS)

decrement: credit - 1

lookup credit_blocked

lookup

Blocks = […]

get(credit_blocked)

Default = []

append From to Blocks

set new credit_blocked

put(credit_blocked , NewBlocks)

NewBlocks
default = InitialCredit

Y

1

N determines whether blocked or not

PROCESSES & BEHAVIOURS: CREDIT FLOW

default credit

credit_flow:ack/1

lookup {credit_to, To}

grant To, MoreCredit

lookup

{_InitialCredit, MoreCreditAfter}

get(credit_flow_default_credit)

get from app env & cache

put(credit_flow_default_credit)

get({credit_to, To})

credit == 1 ?

To ! BumpCreditMsg

get(credit_blocked)

decrement: credit - 1

lookup credit_deferred

undefined

Deferred = […]

get(credit_deferred)

Deferred = []

append {To, Msg} to Deferred

set new credit_deferred

put(credit_deferred , NewDeferredList)

NewDeferredList
default = MoreCreditAfter

blocked?

N

Y

Y

N

Y

N

N

Y

2

{bump_credit, { SenderPid, MoreCreditAfter }}

PROCESSES & BEHAVIOURS: CREDIT FLOW
P1 P2

Message 1

credit_flow:send(P2)

{bump_credit, { P1, MoreCreditAfter }}

credit_flow:ack(P1)

credit_flow:handle_bump_msg(P1)

P2 ! Message 1 receive

Message 2

credit_flow:send(P2) credit_flow:ack(P1)
P2 ! Message 2 receive

Message 3

credit_flow:send(P2) credit_flow:ack(P1)

P2 ! Message 3 receive

Message 4
MoreCreditAfter to P1 == 1

{'DOWN', Ref, process, Pid, Info}

credit_flow:status(P1) => flow

credit_flow:send(P2)
P2 ! Message 4

credit_flow:send(P2)
P2 ! Message 4

Message 4

receive

credit_flow:peer_down(P1)

credit_flow:status(P1) => running

credit_flow:ack(P1)
receive

Messages

PROCESSES & BEHAVIOURS: CREDIT FLOW

mediationP

basic.publish

rabbit
queue

process

frame

route

QueuePid(s)

rabbit
channel

rabbit
message

store
rabbit

exchange

delivery [M, QueuePid]

#delivery{}

delivery_attempt

publish

INTERNAL
API C

socket
reader

Mnesia

#basic.publish{}

#basic.publish{}

PROCESSES & BEHAVIOURS: DELEGATES

 Optmized internode communication

 Synchronous and Asynchronous operations

 Minimum blocking - configurable pool size

 Optmized process monitoring (on local node only)

 Low bandwidth usage on distribution l inks

PROCESSES & BEHAVIOURS: DELEGATESY

is PID
registered

N Y

{LocalPIDs, Grouped}

phash2(self(), Count)

RemoteNodes, Delegate,

{invoke, FunOrMFA, Grouped}, infinity

{ Good, Bad }

safe invoke FunOrMFA

Result

{ [{PID, Result}], [] }

Result

M:F([Pid, A])

apply({M, F, A}, Pid)

invoke MFA on Pid safe invoke MFA on Pid

gen_server2:multi_call/4

acquire delegate

{LocalPIDs, Grouped}

Group PIDs by node

{LocalPIDs, Grouped}

[PID] or PIDs

N

is PID
local?

Y

delegate:invoke/11

PROCESSES & BEHAVIOURS: DELEGATES

{LocalPIDs, Grouped}

phash2(self(), Count)

[RemoteNodes, Delegate,

 {invoke, FunOrMFA, Grouped}]

{ Good, Bad }

safe invoke FunOrMFA

Result

{ [{PID, Result}], [] }

Result

M:F([Pid, A])

apply({M, F, A}, Pid)

invoke MFA on Pid

gen_server2:abcast/3

acquire delegate

{LocalPIDs, Grouped}

Group PIDs by node

{LocalPIDs, Grouped}

[PID] or PIDs

N

is PID
local?

Y

delegate:invoke_no_result/12

PROCESSES & BEHAVIOURS: DELEGATES

mediationP

basic.publish

rabbit
queue

process

frame

route

QueuePid(s)

rabbit
channel

rabbit
message

store
rabbit

exchange

delivery [M, QueuePid]

#delivery{}

delivery_attempt

publish

INTERNAL
API C

socket
reader

Mnesia

#basic.publish{}

#basic.publish{}

PROCESSES & BEHAVIOURS: DELEGATES

P1

P3

P4

P8

P2

P7

P10

P5

P6

P9

MSG

[P2,P3,P4,P5,P6
 P7,P8,P9,P10]

NODE-1

NODE-2

NODE-3

PROCESSES & BEHAVIOURS: MORE …

 Decorators

 Behaviour for attaining consensus on a group of

 Dynamic state updates of implementing processes

 Facil i tate OAM, CLI tools, e.g. l ive policy updates

 GM (Guaranteed Multicast)

 Optimized monitors, at most 1 monitor per process

 PMon

 Querying capabil it ies, e.g. is_monitored/1

processes

PLUGINS

SUPERVISION

INITIALIZATION

PROCESSES,
BEHAVIOURS

APPLICATIONS

rabbit
application

plugins

APPLICATIONS: PLUGINS
 Plugin architecture “pattern”: highly extensible

 Plugins are simply OTP applications (zipped)

 Dynamically started/stopped (& expanded) via CLI

 Active plugins maintained in an enabled_plugins f i le

 Queried and updated on runtime

• rabbitmq-plugins enable <PLUGIN/APP-NAME>

• rabbitmq-plugins disable <PLUGIN/APP-NAME>

 Enabler for multi-protocol handling (MQTT, STOMP, . .)

 Awesome for abstracting Erlang/Elixir expertise!

CODEBASE: RABBITMQ

 https://github.com/rabbitmq/rabbitmq-server

 https://github.com/rabbitmq/rabbitmq-common

https://github.com/rabbitmq/rabbitmq-server
https://github.com/rabbitmq/rabbitmq-common

END: THANK YOU

QUESTIONS

Twitter: dube_aya Github: Ayanda-D

