code beam sf 2019

pretty state machine

how It started

think like a telecom switc
T

-

jeff smith

@electricshaman

O)X=plelelle

YOUR GRID. IN BALANCE.

talk objective

encourage adoption of gen_statem in OTP

gen_statem

performance on par with gen_server

(In practice)

gen_state_machine

elixir wrapper

concepts

state
data

event

action

concepts

: Llocked
data
event
action

concepts

: Llocked
%{code: 12345}

event
action

concepts

: Llocked
%{code: 12345}
{:button, 5}
action

concepts

event type event content

: locked
/ %{code: 12345} |
.cast, {:button, 5}
action

iy

concepts

: locked
%{code: 12345}
.cast, {:button, 5}
{:reply, from, :ok}

multiple actions

{:reply, from, :ok},
{:state_timeout, 10 000},
{:next_event, :cast, {:button, 5},

getting started

def start_link() do

GenStateMachine.start link(MODULE , [])
end

def init(_) do

data = %{}

{:0k, :o0ff, data}
end

Initial state

. CHOOSE YOUR OWN ADVENTURE® & 39

YOU'RE THE STAR OF THE %
STORY! CHOOSE FROM 22 POSSIBLE ENDINGS

' SUPERCOMPUTER

BY EDWARD PACKARD

callback modes

choose your own adventure

ILLUSTRATED BY FRANK BOLLE

the mission

handle all possible combinations of
event & state

adventure 1: handle event function

“event centered approach”
branch on event then state

all events handled in function
handle event/4

default callback mode

adventure 1: handle event function

current state

!

def handle_event(:cast, :flip, :off, data) do
{:next_state, :on, data + 1}
end

adventure 2: state functions

“state centered approach”
callbacks organized around state

branch on state then event

adventure 2: state functions

one callback function® per state

StateName/3

adventure 2: state functions

current state

!

def off(:cast, :flip, data) do
{:next_state, :on, data + 1}
end

choose your adventure

callback mode() — state functions.

use GenStateMachine,
callback _mode: :state functions

callback mode() — handle_event function.

use GenStateMachine,
callback mode: :handle event function

same hehavior
different callbacks

state enter callbacks

use GenStateMachine, callback mode:
[:state functions, :state enter]

event content: old state

k

def off(:enter, :on, data) do

:keep_state_and_data
end

Inserted events

Generate events from your own state machine!

{ :next event,
event_type,
event content}

postpone

| jJust can't deal with you right now

emulate selective receive

The gen statem event queue model is
sufficient to emulate the normal process
message queue with selective receive.

Postponing an event corresponds to not
matching it in a receive statement, and
changing states corresponds to entering a
new receive statement.

emulate selective receive

def wait for 1t do
receive do
{:0k, {:step, 1}} —

after 0 —
wait for it()
end
end

timeouts

3 types of timeouts

event timeout

cancelled on any message

{:timeout, 1 000}

state timeout

cancelled when state changes

{:state timeout, 10 000}

state timeout in practice

:state timeout,
30 000,
{:response_timeout, stream, from}

}

state timeout in practice

def handle_event(
:state timeout,
{:response_timeout, stream, from},
:awalting response,
data

) do

actions = {:reply, from,
{:error, :response_timeout}}
{:next_state, :ready, data, actions}

end

generic timeout

not cancelled for you

{

{:timeout, :name},
10 000
}

welcome to the machine

def flip_it() do
GenStateMachine.cast(__MODULE _, :flip)
end

def call it() do
GenStateMachine.call(__ MODULE , :hello)
end

additional resources

http://erlang.org/doc/man/gen statem.html

http://erlang.org/doc/design principles/
statem.html

https://potatosalad.io/2017/10/13/time-out-
elixir-state-machines-versus-servers

https://github.com/erlang/otp/blob/master/
lib/stdlib/src/gen statem.erl

