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Overview 
�  Motivation: understand the essential effect of  time 

�  Time is subtle: sometimes it makes a difference, or not 

�  Examples of  distributed programs 
�  Client/server, other distributed algorithms 

�  How to design with interaction points 
�  Distributed functional concurrency 
�  Multi-agent concurrency 
�  Client/server redux 

�  Case study: eventual consistency 

�  Conclusions and advice for system designers 



Gnosticism 

 
 

Observable universe 
  

Created by the demiurge 
(with space and time) 

Pleroma 
 

World of  ideal forms 
(without space and time) 

Humans must 
build a bridge 
to the pleroma 

“Time is the breath of the demiurge.  
And all his creation, the expansion of the 
universe, the evolution of species, the 
gradual development of his plan, could 
not occur without time.  According to the 
Gnostics, the time-breath of the 
demiurge is as satanic as matter and as 
satanic as the demiurge himself.” 

– “The Forbidden Religion” by José M. Herrou 
Aragón 



Motivation 



Poker and chess 
�  Programming is superficially like mathematics, but 

there is a fundamental difference between the two 
�  Programming is only interesting because computers 

run in the real world, whereas mathematics is a purely 
formal game of  symbol manipulation 

�  “Programming is to mathematics as poker is to chess” 
�  Poker is only interesting when real money is involved 

�  What real-world property is vital for programming? 
�  It is time 



We will build a bridge… 
�  …between two research communities 

�  Distributed systems 
�  Programming languages 

�  There is not much interaction between the two 
�  Work on distributed abstractions, not much more 
�  The communities do not understand each other 

�  In this talk we will make a deep connection 
�  We will apply language theory in a fundamental way 

to build better distributed systems 
�  It is surprising what a difference it can make 



Functional programming 
�  Confluent reduction of an initial expression to a final result 

�  This has very strong mathematical properties that we can use 
�  For reasoning, debugging, testing, optimization, and maintenance 

�  For concurrency, parallelism, and distribution 

�  And there is no efficiency penalty compared to other paradigms 

�  But it can’t interact with the real world!  Let’s see why: 
�  During the execution, we would like to accept inputs coming from 

the real world and outputs going back to it 
�  Functional programming can’t do this because the execution of  a 

functional program is a step-by-step reduction of  an initial expression to a 
final result.  Reduction steps take time, and the inputs will arrive during 
this time.  The reduction can’t use them unless we could put them in the 
initial expression.  But we can’t do this, because the inputs are not known 
in advance. 



Imperative programming 
�  To interact with the real world, we need to add 

something to functional programming 
�  A way to receive an input during execution 

�  This lets us interact with the real world, but in the 
same breath we give up the good properties of  
functional programming 

�  Can we have our cake and eat it too?  Both the good 
properties of  functional programming and interaction 
with the real world? 
�  No we can’t!  So what can we do…? 



The solution 
�  Write most of  the program with functional programming 

�  And add small pieces of  imperative programming only in 
those places that interact with the real world 

�  Usually there are only a very few such places, so we keep 
most of  the advantages of  functional programming  

�  We can use this to improve existing systems too… 
�  Existing systems are often not designed like this!  They do 

way too much imperative programming.  (Older systems 
like Java are especially bad.) 

�  This gives us a measure to judge how well existing systems 
are designed (and a way to improve them) 



Some examples 



Client/server 
�  A client/server cannot be written in 

pure functional programming 

�  To satisfy client liveness, the server 
must accept each incoming request 
in reasonable time 

�  The order of  the requests cannot be 
determined in advance because it 
depends on the clients’ timing 

�  So the program is nondeterministic 
�  There is exactly one point where the 

program depends on exact timings, 
namely where the server receives 
messages 

Server 

Client 1 

Client 2 This point is 
a real-world 
interaction! 

Interaction point = part of  system where timing affects the result 



Interaction points 
are everywhere 

�  Reliable broadcast (i.e., all or none broadcast): Has no interaction point 

�  Shared registers: Linearizability has no interaction point.  However, sequential 
consistency and regular registers can introduce interaction points. 

�  Even for quorums, because order of  updates is nondeterministic 

�  Consensus (e.g., Paxos or Raft): Does have an interaction point 

�  Consensus is interesting, because agreement is a form of  determinism 

�  However, there is still nondeterminism in the choice of  accepted proposal 

�  Nondeterminism seems to be inherent when the consensus algorithm is 
running with partial synchrony (like the Internet).  I have no proof, though. 

�  Causality: Concurrent events are often interaction points; ordered events not 

�  Synchrony model: 

�  Partial synchrony or asynchrony: algorithms may have interaction points 

�  Full synchrony: interaction points can easily be avoided 



How to design with 
interaction points  



Approach 
�  We want to design distributed systems with interaction points, so 

that we can add them only where needed and nowhere else 
�  No existing languages let you do this (as far as I know) 

�  Let us define a simple “design language” that does exactly this 

�  This is the right way, because (1) it will be easy to think about 
designs in this language, and (2) the designs map easily to your 
favorite real language 

�  So we’re golden: we have the right tool and it’s future-proof  

�  But what if  you’re stuck with really bad legacy languages? 
�  Like Java and similar crud 

�  Use the design language and translate to the legacy language 

�  Add layers to clean up the legacy language 



Functions 
and interaction points 

�  We define the design language in two steps:  
1  Distributed functional concurrency (pure) 

2  Multi-agent concurrency (adds interaction points) 

�  Everything we learn from the design language maps 
directly to real languages 
�  Don’t be fooled by complicated real languages: they 

add lots of  bells & whistles to make coding easier, 
but they still do basically the same things as our 
design language 



First step: 
functional concurrency 

�  In the first step we define a simple language to 
write purely functional distributed programs 

�  We do it from the ground up, based on λ calculus 
�  We then give it a more convenient syntax 
�  You can translate this into your favorite language 

�  In the second step, we add interaction points 
�  This will be our design language 

�  Write mostly functional, add a few interaction points 



Lambda (λ) calculus 
�  Lambda calculus is the core of  functional programming 

�  We define it first and then we show functional concurrency 

�  Syntax 
�  x ::= (variables) 

�  t ::= x  |  (λx. t) | (t1 t2) 

�  Semantics (using substitution operation t[x]) 
�  (λx. t[x]) → (λy. t[y])    α-conversion 

�  ((λx. t1) t2) → t1[x:=t2]    β-reduction 

�  ((λx. (t x)) → t (if  x not free in t)   η-conversion  
  



Properties of  λ calculus 
�  Data types and control structures 

�  Data types (lists, numbers, etc.) and control structures (if, case, 
etc.) can be added to the λ calculus without changing anything 
essential 

�  Confluence 
�  Church-Rosser theorem: Final result of a reduction is the same 

for all reduction orders (up to variable renaming) 
�  This holds for many variants of  the λ calculus 

�  Functional concurrency: a more convenient syntax 
�  λ calculus can express networks of  concurrent agents. Each agent 

has its own state and sends and receives messages from 
neighboring agents. 

�  It’s only syntax; it keeps all the good properties of  the λ calculus 



Functional concurrency 
�  Define agents, streams, and threads: 

�  Agent = tail-recursive function 
executing in its own thread 

�  Stream = list read by one agent 
and created by another agent 

�  Thread = a restriction on which 
reductions we are interested in 

 

fun prod(n) 
     delay(1000) 
     n|prod(n-1) 
end 

fun map(s, f) 
     case s of h|t then 
          f(h)|map(t, f) 
     [] nil then 
          nil 
     end 
end 

fun sum(s, a) 
     case s of h|t then 
          h+a|sum(t,h+a) 
     [] nil then 
          nil 
     end 
end 

local s1 s2 s3 in 
   thread s1=prod(1) end 
   thread s2=map(s1,fun (x) x*x end) end 
   thread s3=sum(s2,0) end 
end 

prod map sum 
s1 s2 s3 



Distributed λ calculus 
�  We can easily make functional concurrency distributed 

�  Consider a set of  nodes N with a, b, c, … ∈ N 

�  Localize each term on a node 
�  x ::= (variables) 
�  ta ::= xa  |  (λx. tb)a | (tb

1 tc
2)a 

�  Terms can reference subterms on other nodes 

�  Extend the reduction rules to execute on single nodes 
�  (λx. ta[x])a → (λy. ta[y])a       α-conversion 
�  ((λx.ta

1)a ta
2)a → ta

1[x:=ta
2]      β-reduction 

�  ((λx. (ta xa)a)a → ta (if  x not free in ta)  η-conversion 
�  ta → tb              µ-conversion (mobility) 



Distributed 
functional concurrency 

�  We put each agent on a node 

�  This gives a deterministic 
distributed program: an agent 
always knows from where the 
next input will come 

 

 

fun prod(n) 
     delay(1000) 
     n|prod(n-1) 
end 

fun map(s, f) 
     case s of h|t then 
          f(h)|map(t, f) 
     [] nil then 
          nil 
     end 
end 

fun sum(s, a) 
     case s of h|t then 
          h+a|sum(t,h+a) 
     [] nil then 
          nil 
     end 
end 

local s1 s2 s3 in 
   node s1=prod(1) end 
   node s2=map(s1,fun (x) x*x end) end 
   node s3=sum(s2,0) end 
end 

prod map sum 

node n1 node n2 node n3 

s1 s2 s3 



Second step: 
interaction points 

�  We add interaction points to our design language 

�  We again start with the λ calculus 
�  We add new terms and rules for interaction points 

�  We again define a more convenient syntax 
�  We extend distributed functional concurrency with 

interaction points 
�  This gives multi-agent concurrency 

�  We show how to solve the client/server example 
�  We need only one interaction point in the whole system 



Read-write 
distributed λ calculus 

�  We add read and write operations to the distributed λ calculus 
�  Result depends on reduction order and timing, so they are interaction points 

�  If  the read returns the result of  the most recent write, then it’s mutable state 

�  But write and read can also behave like send and receive 

�  Add read and write terms 
�  x ::= (variables) 

�  ta ::= xa  |  (λx. tb)a | (tb
1 tc

2)a | (σ.tb)a | (ρx. tb)a 

�  Add two reduction rules 
�  (λx. ta[x]) → (λy. ta[y])   α-conversion 

�  ((λx.ta
1) ta

2)a → ta
1[x:=ta

2]  β-reduction 

�  ((λx. (ta x))a → ta (if  x not free in ta)  η-conversion 

�  ta  → tb    µ-conversion (mobility) 

�  (σ.ta)a → ta    σ-reduction (write, i.e., send) 

�  (ρx.ta
1)a → ta

1[x:=ta
2]   ρ-reduction (read, i.e., receive) 



Multi-agent concurrency 
�  We invent a convenient syntax for the read-write λ calculus  

�  We start with functional concurrency (agents, streams, threads) 
�  We add interaction points in a nice way 

�  Inspired by the client/server example, we add named streams 
�  Sending a value to the name will add it to the stream; reading the 

stream will read the value 

�  p=newport(s)  /* Create a name p for stream s */ 
send(p, x)   /* Add x to the end of  the stream named by p */ 

�  This gives multi-agent concurrency 
�  Most of  the program is functional, with a few interaction points 

�  The best paradigm for writing concurrent and distributed programs! 
�  Client/server is easy to write with multi-agent concurrency… 



Client/server redux 
�  Now we can define a client/server 
�  fc and fs are pure functions 
�  There is just one interaction point 

Server 

Client 1 

Client 2 Port p is the 
interaction point 

local s p in 
   node p=newport(s) server(state,s) end 
   node client(state1,p) end 
   node client(state2,p) end 
   …  /* as many clients as we need */ 
end 
 
fun client(state,p) 
   send(query(state),p) 
   client(fc(state),p) 
end 
 
fun server(state,s) 
    case s of q|t then 
          server(fs(q,state),t) 
     [] nil then 
          nil 
     end 
end 

One interaction point 



Now we can design! 
�  Now we can design distributed systems that manage all 

their interactions with the real world 

�  We write most of  the program in functional concurrency 

�  By definition, this has zero interaction points 

�  We then add interaction points as needed  

�  Only when we need to interact with the real world 

�  The full program uses multi-agent concurrency 

�  As few as possible 

�  Interaction points add messiness! 



Case study: 
Eventual consistency 



Eventual consistency 
�  Commonly done for performance 

�  Requests can be initiated 
concurrently; multiple requests can be 
“in flight” simultaneously; replies are 
returned as quickly as possible 

�  Writes are eventually propagated to all 
replicas; reads are eventually handled 
by at least one replica 

�  Consider a replicated database 
�  A write is done and immediately 

followed by a read (without waiting for 
the write to finish) 

�  Does the read see the write? 
�  Sometimes yes, sometimes no! 

�  How should we think about this? 
�  Focus on the interaction points! 

Can we get rid of  them? 

Replica 1 

Replica 2 

Replica 3 

Write 

Read 



Removing interaction points 
�  Improve the design by removing interaction points 

�  For eventual consistency there are several ways 
�  Use strong consistency (quorums).  This fixes part of  the 

problem, but successive operations are still 
nondeterministic.  We can improve it by adding causal 
order to the system, it’s not that simple. 

�  Use convergent consistency (Conflict-free Replicated Data 
Types – CRDTs).  Make sure updates never lose information 
(use monotonic writes instead of  arbitrary writes). 

�  Convergent consistency (e.g., Antidote or SwiftCloud): 
�  Reads observe previous writes 
�  Successive reads observe increasing set of  writes 
�  Writes applied after observed reads 



Convergent consistency 
�  We should make this precise (ambiguity is the bane of  distribution!) 

�  We use events e on objects k with visibility between events e1≺vise2 
(see “Principles of  Eventual Consistency” by Sebastian Burckhardt) 

�  Eventual consistency 
�  An operation is intermittent before becoming permanent 

�  “All an object’s events are seen by all other events on that object, except for a 
finite number” 

�  For all objects k: ∀e∈Ek. {e’∈Ek | e⊀vise’} is finite 
where Ek is the set of  k’s events 

�  Convergent consistency 
�  An operation once done is seen forever 

�  “Event e of  object k1 once visible to k2 is always visible to k2” 

�  ∀e∈Ek1 ,∀e’,e’’∈Ek2 : e≺vise’∧e’≺vise’’ ⇒ e≺vise’’ 

Highly recommended! 
Free pdf! 



Conclusion 



Conclusion 
�  Programming requires real-world interaction 

�  This is why programming is like poker, not like chess 

�  For distributed programming especially, time and order of  events is crucial 

�  Functional programming is the best paradigm for writing programs 
�  But it does not support real-world interaction 

�  Imperative programming does, but drops most of  the advantages 

�  The solution is to use both in the right way 
�  Use functional programming by default 

�  Add interaction points for real-world interaction 

�  Use a design language that lets you identify the interaction points 

�  This is work in progress: we are still formalizing and elaborating it 

�  Exercise for you: define the design language as an Erlang variant! 
�  Right now, each Erlang process is an interaction point, which is the wrong 

default; the variant needs to switch this default 



Extra information 



A functional 
programming view 

�  Another way that pure functions make code easier to reason about 
won’t be apparent when you’re first getting started. It turns out that 
what really happens in FP applications is that (a) you write as much 
of  the code as you can in a functional style, and then (b) you have 
other functions that reach out and interact with files, databases, 
web services, UIs, and so on — everything in the outside world. 

�  The concept is that you have a “Pure Function” core, surrounded by 
impure functions that interact with the outside world: 

�  Given this design, a great thing about Haskell in particular is that it 
provides a clean separation between pure and impure functions — 
so clean that you can tell by looking at a function’s signature 
whether it is pure or impure. 

Excerpt from Benefits of 
Functional Programming, 
chapter of  Functional 
Programming, Simplified, 
by Alvin Alexander, 2019 

The rationale is good, but 
unfortunately Haskell is not a 
good starting point, for four 
reasons: (1) eager should be 
the default instead of  lazy 
(nonstrict), (2) it does not 
have functional concurrency, 
(3) it is not distributed, and 
(4) you often want to hide an 
impure implementation so it 
looks pure from the outside 



Foundation of  Gnosticism 

The pleroma is not a space in the usual sense and does 
not have time; it is not based on metric time or space as 
we know them.  It is the space of  all possible concepts, 
infinitely denser and more intricate than the observable 
universe we know.  Concepts are connected in infinite 
ways to an infinity of  other concepts and are nested 
both towards the small and the large. Consciousness in 
the pleroma surveys concepts like scintillating rays of  
sunlight touching objects in a big dark room full of  stuff.  
What is in the mind is what the light illuminates.  The 
roaming of  a person’s thought processes is a faint echo 
of  this. 
 
Functional programming is analogous: an expression is 
reduced step by step. The expression being reduced is 
the illuminated part.  All earlier and later expressions in 
the reduction also exist and are true (because 
expressions remain true forever), but they are not seen 
in the current reduction step.  Time is defined as the 
order of  the reduction sequence, but this order is just 
one among many possible orders of  expressions. The 
Church-Rosser theorem states that no matter what 
choices are made to move the illuminated part, it ends 
up in the same place.  Church-Rosser states that there is 
no free will in the execution of  a functional program. 

The kenoma is a small piece of  the pleroma, with 
concepts connected according to rules set up by a 
minor divinity called the demiurge, and that we call 
the “laws of  physics”. The rays of  light are forced 
to stay on a line, the line of  time.  This gives us the 
illusion of  time and change, but in fact it is just a 
play between the concepts of  time and change, 
acting on the concepts in the observable universe.  
Time is a concept of  sequencing, that connects 
related objects using a relationship called the 
change concept. This is all that the demiurge can 
do, letting us participate in this game of  an 
evolving world.  The demiurge is like a child playing 
with blocks in the corner and we are part of  this 
world of  blocks. But our thought may sometimes 
touch the world of  ideal forms, so maybe we have 
the potential to leave the kenoma. 

Pleroma (“fullness”) 
The world of  ideal forms or 

concepts, it is the only reality 

Kenoma (“emptiness”) 
The observable universe, it may 

be the limit of  our consciousness 


