The Road to Broadway

@plataformatec / plataformatec.com.br

Broadway

A new library for concurrent and
multi-stage data ingestion and
data processing with Elixir

i S D

Problem

Fetch data from Amazon SQS / Google Cloud PubSub
Process data concurrently

Batch data for ack / publishing

Publish data to another source and acR it

Broadway

defmodule MyApp.Broadway do
use Broadway

def start _link(options)

def handle_message(procesor, message, config)

def handle_batch(batcher, messages, batch_info, config)
end

Broadway.start_link(MODULE ,
name: MODULE ,
producers: [

default: [
module: {BroadwaySQS.Producer, queue name: "my queue'},
stages: 4

],
],

processors: [
default: [stages: 20]
1,
batchers: |
default: [batch_size: 10, batch_timeout: 1500, stages: 2]

]
)

Schedule

. (ollections

- (GenStage
- Broaaway

Collections

Requirements

Polymorphic

Fxtensible / open

General: in-memory and resources

Tunable: Eager -> Lazy -> Concurrent -> Distributed

Services Playbook Forge Careers Contact Q, Search our blog...

24

plataformatec

Elixir Agile

Introducing reducees

Elixir provides the concept of collections, which may be in-memory data structures, as well as events, I/O resources and more. Those collections

@{A Written by José Valim.

are supported by the Enumerable protocol, which is an implementation of an abstraction we call “reducees”.

In this article, we will outline the design decisions behind such abstraction, often exploring ideas from Haskell, Clojure and Scala that eventually

led us to develop this new abstraction called reducees, focusing specially on the constraints and performance characteristics of the Erlang Virtual
Machine.

Recursion and Elixir

Elixir is a functional programming language that runs on the Erlang VM. All the examples on this article will be written in Elixir although we will

introduce the concepts bit by bit.

Elixir provides linked-lists. Lists can hold many items and, with pattern matching, it is easy to extract the head (the first item) and the tail (the

rest) of a list:

iex> [h|t] = [1, 2, 3]
iex> h

(ollections: polymorphic

Enum.map([1, 2, 3], fn X X * 2 end)
(2, 4, 6]

Enum.map(1l..3, fn X X * 2 end)
|2, 4, 6]

Collections: extensible

defimpl Enumerable, for: RBTree do
def count/1
def member?/2
def reduce/3
def slice/l
end

Collections: general

1n—-memory
Enum.map([" List™, "of", "lines"], &String.upcase/1l)

resource
Enum.map(File.stream! ("README"), &String.upcase/1)

Collections: tunable

tager

Lazy
Concurrent
Distributed

Collections: eager

iex> [1, 2, 3]
> Enum.map(&print/1)
I Enum.map(&print/1)

W INREFE WNRE-*- -

1, 2, 3]

Collections: lazy

1iex> [1, 2, 3]

I Stream.map(&print/1)
> Stream.map(&print/1)
#Stream<...>

Collections: lazy

lex> [1, 2, 3]

I Stream.map(&print/1)
. > Stream.map(&print/1)
—— Enum.to Llist()

T W WMNNRER=e= = o=

1, 2, 3]

Elixir v1.0

Collections

v Polymorphic

v’ Extensible / open
v General: in-memory and resources
Tunable: Eager -> Lazy -> Concurrent -> Distributed

Pipeline Parallelism

File.stream(path)

Stream.run()

Pipeli
ine Parallelis
m

F1
L
> e.str
> eam(
pat
h)

|
| St N
- .eamlas
> ync
()

|
| St
N .eamlas
> | ync
()

|
| St
N .eamlas
> | ync
()

| >
St
ream.r
.run(
)

Pipeline Parallelism

e— async async async run

Pipeline Parallelism

- Error prone as It requires manual user intervention
- Moving data vs moving computations

- How to reason about fault tolerance?

- How to provide back-pressure?

GenStage

t IS @ new behaviour

Exchanges data between stages transparently with
back-pressure

Provides producers, consumers and producer_consumers

GenStage

producer

producer producer
consumer consumer

producer

consumer
consumer

GenStage: Demand-driven

Subscribes

Asks 10

Sends max 10

Producer Consumer

1. consumer subscribes to producer
2. consumer sends demand
3. producer sends events

GenStage: Demand-driven

Sends max 10 Sends max 10

GenStage: Demand-driven

[t pushes back-pressure to the boundary

It Is @ message contract

GenStage is one implementation of this contract
Inspired by ARRa Streams

Counter Printer
(Producer) (Consumer)

defmodule Producer do
use GenStage

def 1nit(counter) do
{:producer, counter}
end

def handle demand(demand, counter) when demand > 0 do
events = Enum.to list(counter..counter+demand-1)
{:noreply, events, counter + demand}
end
end

state demand handle_demand

, 10 {:noreply, [0, 1, .., 9], 10}

10 5 {:noreply, [10, 11, 12, 13, 14], 15}

15 5 {:noreply, [15, 16, 17, 18, 19], 20}

defmodule Consumer do
use GenStage

def 1nit(:o0k) do
{:consumer, :the state does not matter}
end

def handle events(events, from, state) do
Process.sleep(1000)
I0.1nspect(events)
{:noreply, [], state}
end
end

{:0k, counter} =
GenStage.start_link(Producer, 0)

{:0k, printer} =
GenStage.start_link(Consumer, :ok)

GenStage.sync_subscribe(printer, to: counter)

(wait 1 second)

[0, 1, 2, ..., 499] (500 events)

(wait 1 second)

[500, 501, 502, ..., 999] (500 events)

Subscribe options

max_demand: the maximum amount of events to ask
(default 1000)

min_demand: when reached, ask for more events
(half of max_demand)

cancel: how to act when the producer cancels/terminates

ARl A\ =

max_demand: 10, min_demand: 0

the consumer asRs for 10 items
the consumer receives 10 items
the consumer processes 10 items
the consumer asRs for 10 more
the consumer waits

ARl A\ =

max_demand: 10, min_demand: 5

the consumer asRs for 10 items

the consumer receives 10 items

the consumer processes 5 of 10 items
the consumer asRs for 5 more

the consumer processes the remaining 5

(enStage
dispatchers

Dispatchers

Per producer
Effectively receive the demand and send data
Enable concurrency by dispatching to multiple stages

DemandDispatcher

BroadcastDispatcher

1,2,3

e Drod

PartitionDispatcher

rem(event, 4)

1,2,3,4,5,6

— @l

! HOME INSTALL GUIDES LEARNING DOCS
ll 0

Announcing GenStage

July 14, 2016 - by José Valim - in Announcements

Today we are glad to announce the official release of GenStage. GenStage is a new Elixir
behaviour for exchanging events with back-pressure between Elixir processes. In the short-
term, we expect GenStage to replace the use cases for GenEvent as well as providing a
composable abstraction for consuming data from third-party systems.

In this blog post we will cover the background that led us to GenStage, some example use
cases, and what we are exploring for future releases. If instead you are looking for a quick
reference, check the project source code and access its documentation.

Background

One of the original motivations for creating and designing Elixir was to introduce better

abstractions for workine with collections Not onlv that we want to nrovide developers

DEVELOPMENT BLOG PACKAGES

News: Elixir v1.8 released

Search...

BLOG CATEGORIES

e Internals
o« Releases

¢ Announcements

OFFICIAL CHANNELS

 #elixir-lang on freenode IRC

o @elixirlang on Twitter

JOIN THE COMMUNITY

o Elixir Forum

[l DISCORD o« @ O

HOME ENGINEERING CHANGELOG ARCHIVE

Top highlight

How Discord handles push request
bursts of over a million per minute
with Elixir’s GenStage

@ Jesse Howarth | Follow |
Dec 12, 2016 - 5 min read

Discord has seen tremendous growth. To handle this growth, our engineering

team has had the pleasure of figuring out how to scale the backend services.

One piece of technology we’ve seen great success with is Elixir’s GenStage.

The perfect storm: Overwatch and Pokemon GO

This past summer, our mobile push notification system started having a

struggle. /r/Overwatch’s Discord had just passed 25,000 concurrent users,

9 AdROll Blog Technology Teams Culture Careers

Interested in working with us? We are hiring! SEE OPEN POSITIONS

Quaff that potion: saving $millions
with Elixir and Erlang

@ Written by Mike Watters, January 08, 2018

We slashed our DynamoDB costs by over 75% using Kinesis, DynamoDB streams, and
Erlang/OTP (and now Elixir) to implement a global cache warming system. We present that

system and two new open-source libraries for processing Kinesis and DynamoDB streams
in a similar way using Elixir and Erlang.

15-20 minute read

AdRoll uses Erlang/OTP as the basis for several internal products, including a real-time

bidding platform running on Amazon EC2. Erlang/OTP is the king of robust highly-
concurrent soft real-time systems such as these.

This article describes how we substantially reduced the cost of an element of our real-

Maximizing HTTP/2 perform-
ance with GenStage

A core feature of our Forza Football app is push notifications about live match
events. With Apple moving their push notifications services to HTTP/2, we
wanted to take advantage of the functionalities that their new API provides and

at the same maximize performance and improve resource usage with the new

platform.

Data ingestion
Jata processing

Data ingestion / Data processing

- Using GenStage for concurrency / back-pressure

- Many projects reimplementing the same feature set:
rate limiting, batching, metrics, etc

- Woes regarding complex pipelines

Complex GenStage pipelines

Sup
one for one

Producer Consumer

Sup
one for one

Producer Consumer Consumer

Sup
rest for one

Producer Consumer Consumer

Sup
rest for one

Producer Producer Consumer

Sup
rest for one

Sup Sup

one for one one for one

Producer Producer Consumer Consumer

Sup
rest for one

N

Sup
one for one

Sup

..Steps... one for one

Producer Producer Consumer Consumer

Complex GenStage pipelines

- How to structure supervisions trees correctly?
- How to handle graceful shutdown without data loss?
- How to reduce the amount of events lost during failures?

Broadway

A new library for concurrent and
multi-stage data ingestion and
data processing with Elixir

Broadway

- Back-pressure and concurrency

- Automatic acknowledgements at the end of the pipeline
- Fault-tolerance with minimal data loss

- Graceful shutdowns

- Batching and partitioning

Broadway

defmodule MyApp.Broadway do
use Broadway

def start _link(options)

def handle_message(procesor, message, config)

def handle_batch(batcher, messages, batch_info, config)
end

VNEXT

- Batchless pipelines (for RabbitMQ and others)
- Metrics and statistics
- Back-off in case of failures

- e1C

Your turn

- Give 1t a try: v0.11s out!

- Write a Broadway producer for your favorite thing
- BroadwaySQS is currently available
- But you can also plug any GenStage producer

olataformatec

consulting and software engineering

Questions?

@plataformatec / plataformatec.com.br

