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Klarna

● Small startup in Sweden in 2005 - I joined in 2008
● Erlang-based system
● Online payments
● Intermediate between customer and merchant, making it simpler to buy
● Settle payment later (using card, bank transfer, invoice, …)
● Now in many countries, including Germany, UK, US
● Millions of customers
● Not only Erlang anymore; many different systems
● We’re now a bank - traceability and isolation required



Our system



The Kred system

● Named after the original company name, Kreditor.
● Monolithic - originally handled everything from receiving purchases and 

doing bookkeeping to serving the web interface and printing invoice pdf:s.
● These days, several parts have moved out to separate services.
● Went live 2005 - 14 years of 24/7 availability.
● No scheduled downtime, ever.
● Never been down for more than about 2 hours consecutive.
● Not perfect - about 99.98% availability per year, historically. (1-2 h/yr)
● Still a lot to do - we want those 5 nines...



Kred system vital stats

● Approx. 1 million lines of Erlang code (not counting tests)
● About 250 separate applications (~20% external open source apps)
● Close to 4000 modules (not counting tests)
● Around 60 developers today, spread over half a dozen teams
● Over 200 committers over the years
● Git history preserved all the way back to late 2004 (CVS -> SVN -> Git)
● Around 140 thousand commits



CI Pipeline

● Git
● Bitbucket
● Jira
● Jenkins
● Docker
● Ansible
● AWS
● RPM
● Artifactory



Pipeline and Branching model

● Git, Bitbucket, Jira, Jenkins, Docker, AWS
● Master is current live version
● Stable will be the next Master (fast-forward), safe to base work on
● Devs branch off Master or Stable
● Every branch must have a Jira ticket (we’re a bank...)
● Builds and runs test suites automatically when pushed to Bitbucket
● Code reviews: at least 2 approvals per branch (we’re a bank…)

○ Path-based: any changes to a team’s code must be approved by someone in that team

● Ready branches get merged and integration tested, Stable moves forward



Nightly tests and releases

● Every evening, the current Stable is tagged as a Release Candidate
● We throw all our system tests at it (4-5 hours…)
● Live-like test environment

○ Multiple nodes, full-size test db, simulated traffic, …
○ Performance graphs, see if something has changed radically

● If everything looks good in the morning, we take the release live
● Typically 2-12 tickets pushed out per day
● Good turnaround - most branches only live for a few days



Problems in the pipeline

● Sometimes the pipeline gets clogged and nothing is released for a few days
● A sneaky error can make it all the way into the integration or system testing

○ That’s what the testing is for - to find them before they go live
○ New ticket and PR to fix the Stable branch again (might take 1-2 hours)

● Main cause of disruptions is hiccups in AWS, Jenkins, Artifactory, Bitbucket, 
… - a single failure there can lose a whole night’s build/test.

● Sometimes time for a rerun and release in the afternoon
○ Hope to be able to speed up things even more to release multiple times per day.



Quick fixes and configuration changes

● Fix urgent problems on live systems (bugs, environmental changes)
○ Bypass the main release pipeline
○ Still needs ticket, review, stakeholder approval
○ Needs to pass build and test suites
○ Separate Change Request to Live Operations (we’re a bank…)
○ Deploy code as for any other upgrade

● Configuration changes on live systems
○ Need ticket and Change Request to Live Operations (we’re a bank…)

● With good tools it only takes minutes to handle the extra administration
○ Not a lot of pain
○ Traceability is nice for developers too, a couple of years later!



Keeping developers happy/productive

● Keeping local compile times down (heavily parallel build)
● Reducing pipeline turnaround time (parallelized test suites)
● Tool integration, reduce manual clicking in web interfaces
● Code ownership - Erlang Apps owned by teams

○ Reduce likelihood of merge conflicts
○ Easy to determine who reviews what

● Applications make it easier to add and remove whole code units
○ Satisfying to delete a whole application

● Find silly errors at local build time, not at the end of a full test suite run
○ Xref checks, etc.



Reshaping our system



A different time when we started

● OTP 10
● No Common Test, no Rebar, no Dialyzer
● No cloud computing
● Yaws was the obvious/only choice for a web server
● No good database bindings, so Mnesia was the obvious choice
● Nobody really knew how OTP releases worked
● CVS/Subversion (switched to Git in mid-2010, helped a lot with merges)
● Cruise Control for automated build/test



We made every mistake in the book

● ...and some of those books were not written back then.
● Erlang/OTP and the Beam have held up incredibly well!
● Handled an enormous growth that nobody had expected or dreamt of
● Erlang has allowed us to restructure bit by bit without stopping



From few applications to many

● Original system had ~10 apps (of which 2 were ‘misc’ and ‘util’)
● By late 2011 we had about 30 apps, and about 100 developers
● Merge conflicts, code ownership, dependencies, code structure, ...
● “Cambrian explosion”: Split into 100+ apps (without stopping anything)
● Made it easy to add/remove apps as units of functionality - now ~250



Splitting up bad supervision trees

● Some of the original apps were doing too many things
● Several unrelated processes under the same supervision tree
● Moved out to new apps with their own supervision

○ Some processes could simply be stopped and restarted under new supervision
○ Some critical processes were moved to new supervisors without stopping

● Made it easier to think about responsibilities of a particular app



Reducing coupling

● Splitting up header files (small is good) - avoid useless recompiling
● Parallelize build as much as possible
● Applications split into layers; xref-like checking of app dependencies

○ Internal tool, might make open source on day

● Code which is only intended for testing should not be part of release
○ Ensure nobody relies on some “for test only” functionality on live systems

● More abstraction - restrict knowledge to specific modules; others use API
○ Data structures
○ Database tables

● Break out subsystems to external services (maybe not in Erlang)



Live upgrades



How to do a live upgrade

1. Deploy code to machines
2. Load it
3. Profit!

But why not just stop servers and restart them one at a time?



Why do live upgrades?

● If you stop one node, you need at least 2 more to guarantee redundancy
○ You might not care if you have a bunch of nodes in the cloud
○ On a black-box telecom server or embedded system, it’s a matter of economics
○ Stopping and restarting can take a lot of time
○ You might not want a long window where nodes are running different code

● Live upgrades can have much less impact on the system



Enable small changes without stopping

● Bug fixes or temporary workarounds
● Add missing logging or instrumentation when you need it
● Insert redirections of calls to switch to a new service

○ First running in shadow mode, to verify that it behaves as expected
○ Start directing percentage of traffic to new service
○ Increment until all load is on new service
○ Disable old service
○ Remove obsolete code



We don’t use OTP releases...

● Historical reasons
○ Releases were specialized knowledge even for us
○ Poor documentation and tools

● May switch to releases using Rebar3 in the future, but no hurry
● Releases use a static list of modules to be loaded, paths to add
● We detect dynamically which modules have been changed and which apps 

need to be added to the code path
○ Originally based on Beam file timestamps
○ Nowadays, using the MD5 check of code:modified_modules()

● “Upgrade actions” for things beyond simple code changes
● We don’t suspend gen_servers during upgrade



Erlang code management



Fundamental Design Decisions of Erlang

● Very long running systems (telecom switches)
● Upgrade code without stopping the system
● Modules as the unit of code delivery
● At most two concurrent versions

○ No memory leaks as you keep loading new versions
○ No older code running (no one still using older data formats or protocols)



Loading an Erlang module

Current code Old code

m1

Load m

Two slots



Qualified calls m:f() go to the current version

Current code Old code
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p1 p2

p3Calling
Processes



Loading a new version (atomic)
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New callers will use the new version
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Old callers terminate (finish or crash)...
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...or migrate by a qualified tail call m:f()

Current code Old code

m1

p2

p3

m2

p4 p5



Old slot must be purged to load again
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Load next version (and so on)
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Code pointers

● Current program point of a process
● Program points saved on the process’ call stack
● Referencing a specific internal point in a specific version of the module 
● To migrate a process to new code, you must:

○ Perform a tail call - do not leave any pointers to the old code on the stack
○ ...using a qualified (“remote”) call m:f(...) - so you jump to the new code

● Any long-running process should regularly go via such a call
○ E.g., a server loop typically does this between handling requests

● Funs are not code pointers, handled differently



The Code Server:  code:*(...)

● Manages the code path
● Tracks additional info

○ Path from where the Beam code was loaded

● Sticky directories and modules
○ Prevents accidentally replacing system modules

● Other utility functions
○ Look up application directories, e.g. lib_dir(stdlib, ebin)
○ Check for module name clashes in your path
○ Check which modules are modified on disk



Basic code operations

● code:load_file(ModName)
○ Loads from code path, atomically moves any current code to Old slot
○ Old slot must be purged first; only the shell function l(ModName) will purge for you

● code:load_binary(ModName, Filename, Binary) 
○ Load a Beam binary object, Filename is just metadata - use empty string for generated code

● code:purge(ModName)
○ Purges old code slot. Kills any processes still referencing the old code

● code:soft_purge(ModName)
○ Gives up and returns false if some process still references the old code

● code:delete(ModName)
○ Moves current code to the old slot (must be purged first), no new calls can be made



Fully purging a module

● To remove a module and ensure no process is still referencing that code:

purge(ModName) - drop any existing old version

delete(ModName) - move current to old slot, clearing current

purge(ModName) - clear old slot



Detecting modified modules

● code:modified_modules()
○ List all loaded modules that have changed on disk

● code:module_status(ModName)
○  -> not_loaded | loaded |modified| removed

● Compare the MD5 checksum of the loaded code with that of the Beam file
● Erlang Shell: mm() and lm()
● Code contributed by Klarna, available since OTP 20



The Code Primitives:  erlang:*(...)

● Low-level primitives
○ No knowledge about search paths, stickiness, applications, etc.
○ Code server is built on top of these

● Only use if you know what you’re doing
● Can make the code server lose track of what’s loaded and how
● Faster (no server process communication overhead)



Some useful primitives

● erlang:loaded()
○ List all loaded modules (without asking the code server)

● erlang:module_loaded(ModName) -> true | false
○ Check if the Current slot is populated

● erlang:check_old_code(ModName) -> true | false
○ Check if the Old slot is populated

● erlang:check_process_code(Pid, Module)
○ Check if Pid is referencing Module (expensive; can be used asynchronously)

● erlang:pre_loaded()
○ List all modules preloaded into the Beam as part of bootstrapping



Atomic load of multiple modules

● New since OTP 19
○ We had been hinting to the OTP team for some years that this would be a good thing

● All-or-nothing load of multiple modules as a single operation
● Avoids certain race conditions between modules

○ Newly loaded version of module n wants to call new function foo/3 in module m, but the new 
version of m has not been loaded yet, so the call fails in mid-upgrade

● code:atomic_load(ListOfModules)
○ Can fail, e.g. if a module contains an on_load directive; if so, nothing is changed

● Two-phase loading:
○ code:prepare_loading(Modules) - does most of the hard work, but no visible effects
○ code:finish_loading(Prepared) - atomically switches to the new versions



Beam code and Erlang VM compatibility

● Generally, you are guaranteed to be able to take Beam code compiled using 
a particular Erlang version and run it on the VM of the next major release.

● This has sometimes not been true
○ Incompatibility of Fun representations between OTP 16 and 17
○ Dropped support for “tuple calls” in OTP 21 (now fixed by a compatibility flag)



Mindset



Expect failure now and then

● Do your best to get upgrades right
● But don’t trust that they will not go wrong occasionally
● Write resilient code that survives hiccups
● Logging is your friend



Traditional software code scenarios

● Cold start, empty system
○ No compatibility worries for the local data

● Restart, populated system
○ Persistent state (files) could be using older formats

● Other machines may be using older protocols



Live upgrade code scenarios

● All the traditional scenarios, plus:
● Old data formats still in use, in RAM

○ ETS tables
○ Message queues
○ Process states

● Knowing when it’s safe to remove code handling old formats
● Might need upgrade actions to e.g. rewrite stuff in ETS tables.



Beware systematic failure on all nodes

● Can be hard to avoid upgrading all nodes at once
○ They need to cooperate about any new feature being added

● If a critical component crashes on all nodes, you’re down
○ They may all hit the same new bug within a short time span

● Feature switches may enable new code on some nodes only



There is no Rollback - Only Roll Forward

● Any nontrivial change could have affected the system as soon as it went live
○ Runtime state of processes, arguments being passed around
○ Messages between processes, in flight or in queues
○ Data written to database tables, files

● Rolling back the code makes it incapable of handling the new data
● Push a new change that fixes the problem

○ Maybe a quick fix first to paper over the worst effects, followed by a full fix later

● No real point in trying to make your toolchain support rollback



Techniques



Sanity Checks

● Xref checks to ensure new version has no missing functions
● Anything else specific to your system and upgrades



Separate releasing from activating

● Feature switches
○ Ship the code but let it do nothing until activated

● Release in multiple phases
○ Ship code that handles new data formats before the code that produces it
○ Handle both versions for a transition period
○ Drop the obsolete code



Separate may-crash from must-not-crash

● Many subsystems/applications can be allowed to crash and restart
○ Use normal precautions for upgrades, but assume things can go wrong
○ If they keep crashing, you can apply a quick fix

● Some subsystems/applications are critical to the node
○ Keep the code simple and obvious - put complex stuff somewhere separate
○ Be very conservative with changes
○ If there is a failure, it’s usually better if the whole node restarts



Temporary Dirty Hacks

● Exporting functions that are needed for some specific upgrade action
○ Unexport again or make official API

● Using the sys module and other internal functions in OTP to modify the state 
of servers and supervisors on the fly

● Putting soft links on disk to handle file paths that need changing



Full upgrade testing

● Part of CI pipeline, typically in Docker
● Small cluster, not just one machine
● Simulated load, not just idling
● Set up and start current live version, warm up
● Deploy candidate version and perform upgrade
● Collect error logs, metrics



Pitfalls



Remember to enable code migration

● Any service or long-running task should regularly do a qualified tail call
● If it does not, it will be stuck in the old code until done or killed
● Can be easy to miss even in a code review



Remember to update settings everywhere

● Upgrades often need an action to modify a setting
● This must be done both to the running system and on disk
● Easy to forget to make persistent so you lose it if the node restarts



Summary



Advantages and disadvantages

+ Small impact on running system - release often
+ Fix problems or add features without stopping anything
+ Gradually reshape the code
- Needs careful coding, knowledge, code reviews
- Some changes must be released in phases



Should you be doing it?

● Yes, if not having to stop nodes is a major advantage to you
● Might not be worth it if you’re happy with stopping nodes

○ Maybe only for quick fixes



The End



Load Your Code on the Road

https://docs.google.com/file/d/1jZvLUr6AfyFWqNMCr8wRd1P9NtkEkWh5/preview

