
The Art of the Live Upgrade
Lessons from 10 years of evolving a live system

Richard Carlsson

Klarna

● Small startup in Sweden in 2005 - I joined in 2008
● Erlang-based system
● Online payments
● Intermediate between customer and merchant, making it simpler to buy
● Settle payment later (using card, bank transfer, invoice, …)
● Now in many countries, including Germany, UK, US
● Millions of customers
● Not only Erlang anymore; many different systems
● We’re now a bank - traceability and isolation required

Our system

The Kred system

● Named after the original company name, Kreditor.
● Monolithic - originally handled everything from receiving purchases and

doing bookkeeping to serving the web interface and printing invoice pdf:s.
● These days, several parts have moved out to separate services.
● Went live 2005 - 14 years of 24/7 availability.
● No scheduled downtime, ever.
● Never been down for more than about 2 hours consecutive.
● Not perfect - about 99.98% availability per year, historically. (1-2 h/yr)
● Still a lot to do - we want those 5 nines...

Kred system vital stats

● Approx. 1 million lines of Erlang code (not counting tests)
● About 250 separate applications (~20% external open source apps)
● Close to 4000 modules (not counting tests)
● Around 60 developers today, spread over half a dozen teams
● Over 200 committers over the years
● Git history preserved all the way back to late 2004 (CVS -> SVN -> Git)
● Around 140 thousand commits

CI Pipeline

● Git
● Bitbucket
● Jira
● Jenkins
● Docker
● Ansible
● AWS
● RPM
● Artifactory

Pipeline and Branching model

● Git, Bitbucket, Jira, Jenkins, Docker, AWS
● Master is current live version
● Stable will be the next Master (fast-forward), safe to base work on
● Devs branch off Master or Stable
● Every branch must have a Jira ticket (we’re a bank...)
● Builds and runs test suites automatically when pushed to Bitbucket
● Code reviews: at least 2 approvals per branch (we’re a bank…)

○ Path-based: any changes to a team’s code must be approved by someone in that team

● Ready branches get merged and integration tested, Stable moves forward

Nightly tests and releases

● Every evening, the current Stable is tagged as a Release Candidate
● We throw all our system tests at it (4-5 hours…)
● Live-like test environment

○ Multiple nodes, full-size test db, simulated traffic, …
○ Performance graphs, see if something has changed radically

● If everything looks good in the morning, we take the release live
● Typically 2-12 tickets pushed out per day
● Good turnaround - most branches only live for a few days

Problems in the pipeline

● Sometimes the pipeline gets clogged and nothing is released for a few days
● A sneaky error can make it all the way into the integration or system testing

○ That’s what the testing is for - to find them before they go live
○ New ticket and PR to fix the Stable branch again (might take 1-2 hours)

● Main cause of disruptions is hiccups in AWS, Jenkins, Artifactory, Bitbucket,
… - a single failure there can lose a whole night’s build/test.

● Sometimes time for a rerun and release in the afternoon
○ Hope to be able to speed up things even more to release multiple times per day.

Quick fixes and configuration changes

● Fix urgent problems on live systems (bugs, environmental changes)
○ Bypass the main release pipeline
○ Still needs ticket, review, stakeholder approval
○ Needs to pass build and test suites
○ Separate Change Request to Live Operations (we’re a bank…)
○ Deploy code as for any other upgrade

● Configuration changes on live systems
○ Need ticket and Change Request to Live Operations (we’re a bank…)

● With good tools it only takes minutes to handle the extra administration
○ Not a lot of pain
○ Traceability is nice for developers too, a couple of years later!

Keeping developers happy/productive

● Keeping local compile times down (heavily parallel build)
● Reducing pipeline turnaround time (parallelized test suites)
● Tool integration, reduce manual clicking in web interfaces
● Code ownership - Erlang Apps owned by teams

○ Reduce likelihood of merge conflicts
○ Easy to determine who reviews what

● Applications make it easier to add and remove whole code units
○ Satisfying to delete a whole application

● Find silly errors at local build time, not at the end of a full test suite run
○ Xref checks, etc.

Reshaping our system

A different time when we started

● OTP 10
● No Common Test, no Rebar, no Dialyzer
● No cloud computing
● Yaws was the obvious/only choice for a web server
● No good database bindings, so Mnesia was the obvious choice
● Nobody really knew how OTP releases worked
● CVS/Subversion (switched to Git in mid-2010, helped a lot with merges)
● Cruise Control for automated build/test

We made every mistake in the book

● ...and some of those books were not written back then.
● Erlang/OTP and the Beam have held up incredibly well!
● Handled an enormous growth that nobody had expected or dreamt of
● Erlang has allowed us to restructure bit by bit without stopping

From few applications to many

● Original system had ~10 apps (of which 2 were ‘misc’ and ‘util’)
● By late 2011 we had about 30 apps, and about 100 developers
● Merge conflicts, code ownership, dependencies, code structure, ...
● “Cambrian explosion”: Split into 100+ apps (without stopping anything)
● Made it easy to add/remove apps as units of functionality - now ~250

Splitting up bad supervision trees

● Some of the original apps were doing too many things
● Several unrelated processes under the same supervision tree
● Moved out to new apps with their own supervision

○ Some processes could simply be stopped and restarted under new supervision
○ Some critical processes were moved to new supervisors without stopping

● Made it easier to think about responsibilities of a particular app

Reducing coupling

● Splitting up header files (small is good) - avoid useless recompiling
● Parallelize build as much as possible
● Applications split into layers; xref-like checking of app dependencies

○ Internal tool, might make open source on day

● Code which is only intended for testing should not be part of release
○ Ensure nobody relies on some “for test only” functionality on live systems

● More abstraction - restrict knowledge to specific modules; others use API
○ Data structures
○ Database tables

● Break out subsystems to external services (maybe not in Erlang)

Live upgrades

How to do a live upgrade

1. Deploy code to machines
2. Load it
3. Profit!

But why not just stop servers and restart them one at a time?

Why do live upgrades?

● If you stop one node, you need at least 2 more to guarantee redundancy
○ You might not care if you have a bunch of nodes in the cloud
○ On a black-box telecom server or embedded system, it’s a matter of economics
○ Stopping and restarting can take a lot of time
○ You might not want a long window where nodes are running different code

● Live upgrades can have much less impact on the system

Enable small changes without stopping

● Bug fixes or temporary workarounds
● Add missing logging or instrumentation when you need it
● Insert redirections of calls to switch to a new service

○ First running in shadow mode, to verify that it behaves as expected
○ Start directing percentage of traffic to new service
○ Increment until all load is on new service
○ Disable old service
○ Remove obsolete code

We don’t use OTP releases...

● Historical reasons
○ Releases were specialized knowledge even for us
○ Poor documentation and tools

● May switch to releases using Rebar3 in the future, but no hurry
● Releases use a static list of modules to be loaded, paths to add
● We detect dynamically which modules have been changed and which apps

need to be added to the code path
○ Originally based on Beam file timestamps
○ Nowadays, using the MD5 check of code:modified_modules()

● “Upgrade actions” for things beyond simple code changes
● We don’t suspend gen_servers during upgrade

Erlang code management

Fundamental Design Decisions of Erlang

● Very long running systems (telecom switches)
● Upgrade code without stopping the system
● Modules as the unit of code delivery
● At most two concurrent versions

○ No memory leaks as you keep loading new versions
○ No older code running (no one still using older data formats or protocols)

Loading an Erlang module

Current code Old code

m1

Load m

Two slots

Qualified calls m:f() go to the current version

Current code Old code

m1

p1 p2

p3Calling
Processes

Loading a new version (atomic)

Current code Old code

m1

Load m

p1 p2

p3

m2

Old callers

New callers will use the new version

Current code Old code

m1

p1 p2

p3

New callers

m2

p4 p5

Old callers

Old callers terminate (finish or crash)...

Current code Old code

m1

p2

p3

m2

p4 p5

...or migrate by a qualified tail call m:f()

Current code Old code

m1

p2

p3

m2

p4 p5

Old slot must be purged to load again

Current code Old code

p3

m2

p4 p5 Kills
remaining
callers

Load next version (and so on)

Current code Old code

m2

Load m

p3

m3

p4 p5

Code pointers

● Current program point of a process
● Program points saved on the process’ call stack
● Referencing a specific internal point in a specific version of the module
● To migrate a process to new code, you must:

○ Perform a tail call - do not leave any pointers to the old code on the stack
○ ...using a qualified (“remote”) call m:f(...) - so you jump to the new code

● Any long-running process should regularly go via such a call
○ E.g., a server loop typically does this between handling requests

● Funs are not code pointers, handled differently

The Code Server: code:*(...)

● Manages the code path
● Tracks additional info

○ Path from where the Beam code was loaded

● Sticky directories and modules
○ Prevents accidentally replacing system modules

● Other utility functions
○ Look up application directories, e.g. lib_dir(stdlib, ebin)
○ Check for module name clashes in your path
○ Check which modules are modified on disk

Basic code operations

● code:load_file(ModName)
○ Loads from code path, atomically moves any current code to Old slot
○ Old slot must be purged first; only the shell function l(ModName) will purge for you

● code:load_binary(ModName, Filename, Binary)
○ Load a Beam binary object, Filename is just metadata - use empty string for generated code

● code:purge(ModName)
○ Purges old code slot. Kills any processes still referencing the old code

● code:soft_purge(ModName)
○ Gives up and returns false if some process still references the old code

● code:delete(ModName)
○ Moves current code to the old slot (must be purged first), no new calls can be made

Fully purging a module

● To remove a module and ensure no process is still referencing that code:

purge(ModName) - drop any existing old version

delete(ModName) - move current to old slot, clearing current

purge(ModName) - clear old slot

Detecting modified modules

● code:modified_modules()
○ List all loaded modules that have changed on disk

● code:module_status(ModName)
○ -> not_loaded | loaded |modified| removed

● Compare the MD5 checksum of the loaded code with that of the Beam file
● Erlang Shell: mm() and lm()
● Code contributed by Klarna, available since OTP 20

The Code Primitives: erlang:*(...)

● Low-level primitives
○ No knowledge about search paths, stickiness, applications, etc.
○ Code server is built on top of these

● Only use if you know what you’re doing
● Can make the code server lose track of what’s loaded and how
● Faster (no server process communication overhead)

Some useful primitives

● erlang:loaded()
○ List all loaded modules (without asking the code server)

● erlang:module_loaded(ModName) -> true | false
○ Check if the Current slot is populated

● erlang:check_old_code(ModName) -> true | false
○ Check if the Old slot is populated

● erlang:check_process_code(Pid, Module)
○ Check if Pid is referencing Module (expensive; can be used asynchronously)

● erlang:pre_loaded()
○ List all modules preloaded into the Beam as part of bootstrapping

Atomic load of multiple modules

● New since OTP 19
○ We had been hinting to the OTP team for some years that this would be a good thing

● All-or-nothing load of multiple modules as a single operation
● Avoids certain race conditions between modules

○ Newly loaded version of module n wants to call new function foo/3 in module m, but the new
version of m has not been loaded yet, so the call fails in mid-upgrade

● code:atomic_load(ListOfModules)
○ Can fail, e.g. if a module contains an on_load directive; if so, nothing is changed

● Two-phase loading:
○ code:prepare_loading(Modules) - does most of the hard work, but no visible effects
○ code:finish_loading(Prepared) - atomically switches to the new versions

Beam code and Erlang VM compatibility

● Generally, you are guaranteed to be able to take Beam code compiled using
a particular Erlang version and run it on the VM of the next major release.

● This has sometimes not been true
○ Incompatibility of Fun representations between OTP 16 and 17
○ Dropped support for “tuple calls” in OTP 21 (now fixed by a compatibility flag)

Mindset

Expect failure now and then

● Do your best to get upgrades right
● But don’t trust that they will not go wrong occasionally
● Write resilient code that survives hiccups
● Logging is your friend

Traditional software code scenarios

● Cold start, empty system
○ No compatibility worries for the local data

● Restart, populated system
○ Persistent state (files) could be using older formats

● Other machines may be using older protocols

Live upgrade code scenarios

● All the traditional scenarios, plus:
● Old data formats still in use, in RAM

○ ETS tables
○ Message queues
○ Process states

● Knowing when it’s safe to remove code handling old formats
● Might need upgrade actions to e.g. rewrite stuff in ETS tables.

Beware systematic failure on all nodes

● Can be hard to avoid upgrading all nodes at once
○ They need to cooperate about any new feature being added

● If a critical component crashes on all nodes, you’re down
○ They may all hit the same new bug within a short time span

● Feature switches may enable new code on some nodes only

There is no Rollback - Only Roll Forward

● Any nontrivial change could have affected the system as soon as it went live
○ Runtime state of processes, arguments being passed around
○ Messages between processes, in flight or in queues
○ Data written to database tables, files

● Rolling back the code makes it incapable of handling the new data
● Push a new change that fixes the problem

○ Maybe a quick fix first to paper over the worst effects, followed by a full fix later

● No real point in trying to make your toolchain support rollback

Techniques

Sanity Checks

● Xref checks to ensure new version has no missing functions
● Anything else specific to your system and upgrades

Separate releasing from activating

● Feature switches
○ Ship the code but let it do nothing until activated

● Release in multiple phases
○ Ship code that handles new data formats before the code that produces it
○ Handle both versions for a transition period
○ Drop the obsolete code

Separate may-crash from must-not-crash

● Many subsystems/applications can be allowed to crash and restart
○ Use normal precautions for upgrades, but assume things can go wrong
○ If they keep crashing, you can apply a quick fix

● Some subsystems/applications are critical to the node
○ Keep the code simple and obvious - put complex stuff somewhere separate
○ Be very conservative with changes
○ If there is a failure, it’s usually better if the whole node restarts

Temporary Dirty Hacks

● Exporting functions that are needed for some specific upgrade action
○ Unexport again or make official API

● Using the sys module and other internal functions in OTP to modify the state
of servers and supervisors on the fly

● Putting soft links on disk to handle file paths that need changing

Full upgrade testing

● Part of CI pipeline, typically in Docker
● Small cluster, not just one machine
● Simulated load, not just idling
● Set up and start current live version, warm up
● Deploy candidate version and perform upgrade
● Collect error logs, metrics

Pitfalls

Remember to enable code migration

● Any service or long-running task should regularly do a qualified tail call
● If it does not, it will be stuck in the old code until done or killed
● Can be easy to miss even in a code review

Remember to update settings everywhere

● Upgrades often need an action to modify a setting
● This must be done both to the running system and on disk
● Easy to forget to make persistent so you lose it if the node restarts

Summary

Advantages and disadvantages

+ Small impact on running system - release often
+ Fix problems or add features without stopping anything
+ Gradually reshape the code
- Needs careful coding, knowledge, code reviews
- Some changes must be released in phases

Should you be doing it?

● Yes, if not having to stop nodes is a major advantage to you
● Might not be worth it if you’re happy with stopping nodes

○ Maybe only for quick fixes

The End

Load Your Code on the Road

https://docs.google.com/file/d/1jZvLUr6AfyFWqNMCr8wRd1P9NtkEkWh5/preview

