
Using	Erlang in	Blockchain
Development

Ulf	Wiger
Æternity

Code	BEAM	STO,	Stockholm	1	Jun	2018



Stop	all	the	clocks,	cut	off	the	telephone,
Prevent	the	dog	 from	barking	with	the	juicy	bone.
Silence	the	pianos	and,	with	muffled	drum,
Bring	out	the	coffin.	Let	the	mourners	 come.

What's	the	Best	Language	for	Poetry?

Ja nog är det svårt när droppar faller.
Skälvande av ängslan tungt de hänger,
klamrar sig vid kvisten, sväller, glider –
tyngden drar dem neråt, hur de klänger.



Expressing	Complex	Ideas

• Languages	are	shaped	by	culture	and	experience
• The	language	shapes	the	expression	of	complex	ideas
• Universal	grammar	(Chomsky	2000)



Translating	Complex	Ideas

Furu ike ya
kawazu tobikomu
mizu no oto

Old pond — frogs jumped in — sound of water.

A lonely pond in age-old stillness sleeps . . .
Apart, unstirred by sound or motion . . . till
Suddenly into it a lithe frog leaps.

Into the ancient pond
A frog jumps
Water’s sound!

The	old	pond,
A	frog	jumps	 in:
Plop!

http://www.bopsecrets.org/gateway/passages/basho-frog.htm



Opinionated	Programming	Languages
Instruction-level

Math-oriented

Everything's	an	object

Concurrent	/	functional



The	Modern	Divide

• Performance	vs	Productivity
• High-Level	languages—slower	but	some	10x	more	productive

• Erlang,	Python,	Scala,	Haskell,	Clojure,	...
• Low-Level—detailed,	low	overhead

• C/C++,	linkable
• Java,	etc.	non-linkable

• Performance	in	complex	systems	is	a	different	beast
• HL	languages may	well	be	faster	on	some	tasks,	e.g.

• Complex	memory	management
• Complex	concurrency



The	Modern	Divide	(2)

• Concurrency
• Strong	concurrency	by	design

• Erlang,	Clojure,	Haskell,	GO	(Rust?)	...
• Concurrency	as	an	afterthought

• C/C++,	Python,	(Java),	...

• Fault-tolerance
• By	design

• Erlang,	Akka,	Cloud	Haskell	...
• DIY

• Most	of	the	rest



What	About	Blockchains?

• Few	parts	are	performance	critical	(today)
• Mainly	Proof	of	Work,	hashing,	signatures
• Treat	as	an	external	service	or	BIFs	(potentially	specific	hardware)

• Lots	of	networking
• Moving	target
• Algorithms/features	still	evolving



How	Does	Erlang Help?

• Loosely	coupled	components
• Simplifies	parallel	development
• Simplifies	reuse
• Flexible	evolution

• Concurrency	Done	Right
• Protocol	aspects	isolated	from	program	logic
• Easy	to	change/evolve	protocols
• Networking	scalability	not	a	big	concern
• (we're	not	using	Distributed	Erlang)
• Complex	state	machine	support	(more	later)



How	Does	Erlang Help?	(2)

• Functional	Programming
• Simplifies	testing
• Code,	once	correct,	tends	to	stay correct
• Reduces	surprising	side-effects
• Powerful	for	blockchain state	management

• Carrier-Class	Product	Mentality
• Stellar	backward	compatibility
• Rock-solid	VM
• No	"dependency	hell"
• Basically	'attack-proof' networking	support



Challenges?

• Few	other	blockchain projects	use	Erlang
• Fewer	opportunities	for	direct	reuse
• Then	again,	re-writing/porting	aids	understanding	;-)

• Doesn't	run	on	iOS	or	Android
• Not	necessarily	much	of	a	disadvantage



State	channels	in	Erlang

• Purpose:	Establish	"off-chain"	channels	for	fast	and	cheap	
transactions
• On-chain	activity	only	when	opening	and	closing	channel
• Funds	locked	into	the	channel	can	be	transferred	in	co-signed	transactions	
"for	free"
• "Trust	but	verify"	off-chain,
Mutual	close	or	dispute	resolution	on-chain



Ónen i-Estel Edain.	Ú-chebin Estel anim

• Design	decision: SC	daemon	with	a	simplified	WebSocket API
• Complicates	the	state	machine
• Hopefully	simplifies	client	App	design

{Transfer,	From,	To,	Amt}

{sign,	NewStateTx}

{signed,	 SignedTx}

{update,	SignedTx}
{sign,	 SignedTx}

{signed,	 CoSignedTx}

{update_ack,	CoSignedTx}
{info,	 CoSignedTx}

Awaiting_signature

Awaiting_update_ack Awaiting_signature

Transition	states!



Avoid	Death	by	Accidental	Complexity

• https://www.infoq.com/presentations/Death-by-Accidental-Complexity
(2010	talk,	based	on	Structured	Network	Programming	 EUC	2005)

• Must	avoid	having	to	handle	all	possible	
orderings	of	incoming	messages
• Otherwise,	complexity	explosion	in	transition	
states



State	Machine	programming	in	Erlang

• Old-school:	textbook	Erlang
• Simple	and	beautiful
• No	automatic	support	for	systems	(OTP)	functionality
• plain_fsm – a	cludgyway of getting both

• Old	behavior:	gen_fsm
• Supports	OTP	functionality
• Doesn't	handle	FSM	complexity	(no	selective	receive)

• New	behavior:	gen_statem
• Supports	OTP	functionality
• Supports	selective receive



Erlang pays	off—FSM	programming	in	practice
• As	many	processes	as	logically	
convenient
• Separate	concerns
• Linked	together	for	failure	handling

noise	session
(gen_server)

noise	session
(gen_server)

SC	fsm
(gen_statem)

SC	fsm
(gen_statem)

WS	handler
(cowboy	callback)

WS	handler
(cowboy	callback)

Chain	watcher
(gen_server)

Chain	watcher
(gen_server)



Transition	state	handling	in	gen_statem

Valid	events,	but	should	
not	be	handled	here

Pattern-match	asserting
that	we	got	the	event	
we	were	waiting	for

Invalid	events	(for	now)
handled	by	default



In	summary

• Not	always	easy	to	say	why a	language	is	initially	chosen
• Languages	(esp.	opinionated ones)	shape	your	thinking
• Erlang well	suited	to	blockchain development
• Brilliant	for	state	channel	programming!

• The	gen_statembehavior	is	an	excellent	addition	to	OTP



Æternity epoch	Dependencies

• OTP	components	used
• Mnesia (DBMS)
• ssl,	inets,	asn1	(comms)
• runtime_tools (tracing)

• Æternity core	apps
• Core	svcs,	mining,	chain,	txs,	...
• HTTP-,	Websocket API,	Gossip
• Smart	Contracts,	AEVM
• Naming	Service
• Oracles

• External	components
• Cuckoo	cycle	(C++,	own	wrapper)
• RocksDb (mnesia backend)
• Exometer (metrics)
• Cowboy	(web	server)
• Jsx,	yamerl,	base58,	msgpack
• Jesse	(JSON-Schema	validation)
• IDNA
• enacl,	sha3
• gproc,	jobs,	lager,	poolboy,	...



Build	and	Test

• Rebar3	for	build	(works	so-so)
• EUnit,	Common	Test	for	test	automation
• Dialyzer	type	analysis
• Quviq QuickCheckmodels

• Python-based	acceptance	test	suite


