A PostScript to Functional Geometry aelnarwh




A PostScript to Functional Geometry aelnarwh

Functional Geometry

Peter Henderson

University of Southampton
Southampton, SO17 1BJ, UK
p.henderson@ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/ "ph

October, 2002

Abstract. An algebra of pictures is described that is sufficiently powerful to denote
the structure of a well-known Escher woodcut, Square Limit. A decomposition of the
picture that is reasonably faithful to Escher’s original design is given. This illustrates
how a suitably chosen algebraic specification can be both a clear description and a
practical implementation method. It also allows us to address some of the criteria
that make a good algebraic description.

Keywords: Functional programming, graphics, geometry, algebraic style, architec-
ture, specification.




A PostScript to Functional Geometry

A picture 1s an example
of a complex object that

can be described i1n terms
of 1ts parts.

aelnarwh




A PostScript to Functional Geometry aelnarwh

Let us define a pilcture as a
function which takes three
arguments, each being two-space
vectors and returns a set of

graphical objects to be
rendered on the output device.




A PostScript to Functional Geometry

aelnarwh

[
A

type Box

type Picture

Vector
Vector
Vector }

Box -> Rendering




A PostScript to Functional Geometry aelnarwh

george

VAN




A PostScript to Functional Geometry aelnarwh

also george




A PostScript to Functional Geometry aelnarwh

still george

===




A PostScript to Functional Geometry aelnarwh

turn




A PostScript to Functional Geometry aelnarwh

turnBox : Box -> Box
turnBox { a, b, ¢ } = {

!

= add a b

N T Q
1l
(@)

neg b }

?

turn : Picture -> Picture
turn p = turnBox >> p




A PostScript to Functional Geometry aelnarwh

turn




A PostScript to Functional Geometry aelnarwh

turn >> turn




A PostScript to Functional Geometry aelnarwh

turn >> turn >> turn




A PostScript to Functional Geometry aelnarwh

turn >> turn >> turn >> turn




A PostScript to Functional Geometry aelnarwh

flip




A PostScript to Functional Geometry aelnarwh

flipBox : Box -> Box
flipBox { a, b, ¢ } = {

!

= add a b
neg b

N T Q
1l

1
(@)
—

?

flip : Picture -> Picture
flip p = flipBox >> p




A PostScript to Functional Geometry aelnarwh




A PostScript to Functional Geometry aelnarwh

flip >> flip

A A




A PostScript to Functional Geometry aelnarwh

T0osSsS




A PostScript to Functional Geometry aelnarwh

tossBox : Box -> Box
tossBox { a, b, ¢ } =

{ a = add a (scale 0.5 (add b c))
b = scale 0.5 (add b c)
., c = scale 0.5 (sub c b) }

toss : Picture -> Picture
toss p = tossBox >> p




A PostScript to Functional Geometry aelnarwh

T0osSsS




A PostScript to Functional Geometry aelnarwh

above george ((turn >> turn) george)

V
fh Y- 2




A PostScript to Functional Geometry aelnarwh

aboveRatio : Int -> Int -> Pic -> Pic -> Pic
aboveRatio m n pl p2 =
\box ->

let

f=m/ (m+n)

(b1, b2) = splitVertically f box
1n

(pl1 bl) ++ (p2 b2)

above : Pic -> Pic -> Pic
above pl p2 = aboveRatio 1 1




A PostScript to Functional Geometry aelnarwh

above george ((turn >> turn) george)

A




A PostScript to Functional Geometry aelnarwh

above george ((turn >> turn) george)

A




A PostScript to Functional Geometry aelnarwh

mirrorgeorge

.

7

!




A PostScript to Functional Geometry aelnarwh

mirrorgeorge




A PostScript to Functional Geometry aelnarwh

aboveRatio 2 1 mirrorgeorge george

/ @L
M

BN
N

X I

\
[/




A PostScript to Functional Geometry aelnarwh

beside (flip george) george

Al
FIO IN

AN T A



besideRatio 1 2 george twingeorge

SRR

bl
IS MR



A PostScript to Functional Geometry aelnarwh

quartet gl g2 g3 g4




A PostScript to Functional Geometry aelnarwh

quartet : P -> P ->P -> P -> P
quartet nw ne sw se =
above (beside nw ne)
(beside sw se)




A PostScript to Functional Geometry aelnarwh

T0osSsS




A PostScript to Functional Geometry aelnarwh

nonet henders on

H E
D E
5 O

= Al <
I
\V4
n O I
Omm
= A =Z




A PostScript to Functional Geometry aelnarwh

nonet : P ->P->P->P->P->P->P->P->P ->P
let
row w m e = besideRatio 1 2 w (beside m e)

col n ms = aboveRatio 1 2 n (above m s)
1in

col (row nw nm ne)
(row mw mm me)
(row sw sm se)




A PostScript to Functional Geometry aelnarwh

nonets are just pilctures

I

HEN
D it R
5 N

] o




A PostScript to Functional Geometry aelnarwh

a fish picture




A PostScript to Functional Geometry aelnarwh

over fish ((turn >> turn) fish)




A PostScript to Functional Geometry aelnarwh

over : Pic -> Pic -> Pic
over pl p2
\box -> pl box ++ p2 box




A PostScript to Functional Geometry aelnarwh

ttile




A PostScript to Functional Geometry aelnarwh

ttile : Picture -> Picture

ttile p =
let
pn = (toss >> flip) p
pe = (turn >> turn >> turn) p
in

over p (over pn pe)




A PostScript to Functional Geometry aelnarwh




A PostScript to Functional Geometry aelnarwh

utile




A PostScript to Functional Geometry aelnarwh

utile : Picture -> Picture

utile p =
let
on = (toss >> flip) p
ow = turn pn
DS = turn pw
pe = turn ps
1n

over pn (over pw (over ps pe))




A PostScript to Functional Geometry aelnarwh




A PostScript to Functional Geometry aelnarwh

side 0




A PostScript to Functional Geometry aelnarwh

side 1




aelnarwh

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<

side 2




aelnarwh

side 3

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<




A PostScript to Functional Geometry aelnarwh

side : Int -> Picture -> Picture

side n p =
1f n <= @ then blank
else
let
s = side (n - 1) p
t = ttile p
1n

quartet s s (turn t) t




A PostScript to Functional Geometry aelnarwh

corner 0




A PostScript to Functional Geometry aelnarwh

corner 1




aelnarwh

corner 2

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<

ENINE\D
L




aelnarwh

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<

%

%

= @%

y%@ %ﬁ%@

corner 3




A PostScript to Functional Geometry aelnarwh

corner : Int -> Picture -> Picture
corner n p =
1f n <= 0 then blank
else
let
c = corner (n - 1) p
s = side (n - 1) p
1n

quartet ¢ s (turn s) (utile p)




A PostScript to Functional Geometry aelnarwh

square-limit 0




aelnarwh

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<

square-limit 1
>




A PostScript to Functional Geometry aelnarwh

square-limit 2

@%\?«»ﬂ»@

&@ Dy
? ﬁ ?nma ﬁ S)nma nmE@)nma@nmE%,iué{?«




aelnarwh

square-limit 3

>
<
)
Q
&
O
Q
D
—
C
-
@
.
)
O
-
-]
LL
@
)
)
o
.
<
O
v
)
n
O
(ol
<




A PostScript to Functional Geometry aelnarwh

squarelLimit : Int -> Picture -> Picture
squareLimit n p =

let
mm = utile p
nw = corner n p
sw = turn nw
se = turn sw
ne = turn se
nm = side n p
mw = turn nm
sm = turn mw
me = turn sm

1n

nonet nw Nnm ne mw mm me Sw Sm Se




N
=
p
gv]
c

.
Q

S

)
e
=
e
v gm @ﬁ@%ﬁﬁ@ﬁh N
B @ m @
= - VNG
._Dlh u ,&Vm_&a WE m ;.
; a YV .
S A \@ﬂ
— e VMWV @ Emh@
m (- m@V AV @\vﬁa V
2 o W
+ n a ) a@% @\mﬂw % i
O <
= Q
T o
c
O Q
+ T
)
(@R
-
L
@)
V)]
4+
(Vp)
(@)
al
<




A PostScript to Functional Geometry aelnarwh

A picture needs to be rendered
on a printer or a screen by a
device that expects to be given
a sequence of commands.




A PostScript to Functional Geometry aelnarwh

Programming that sequence of commands
directly 1s much harder than having
an application generate the commands
automatically from the simpler,
denotational description.




A PostScript to Functional Geometry aelnarwh

The pictures were drawn by a
Java program which generated
PostScript commands directly.
The Java was written 1n a
functional style so that the
definitions which were executed
were exactly as they appear 1n
the paper.




A PostScript to Functional Geometry aelnarwh

The pictures were drawn by a
PostScript program which generated
PostScript commands directly.

The PostScript was written 1n a
functional style so that the
definitions which were executed

were not unlike as they appear 1n
the paper.




A PostScript to Functional Geometry aelnarwh

It probably 1s true that PostScript
1s not everyone's first cholce as a
programming language. But let's put
that premise behind us, and assume
that you need (or want) to write a
program 1n the PostScript language.




