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Abstract. An algebra of pictures is described that is sufficiently powerful to denote
the structure of a well-known Escher woodcut, Square Limit. A decomposition of the
picture that is reasonably faithful to Escher’s original design is given. This illustrates
how a suitably chosen algebraic specification can be both a clear description and a
practical implementation method. It also allows us to address some of the criteria
that make a good algebraic description.
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A picture 1s an example
of a complex object that

can be described i1n terms
of 1ts parts.
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Let us define a pilcture as a
function which takes three
arguments, each being two-space
vectors and returns a set of

graphical objects to be
rendered on the output device.
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type Box

type Picture

Vector
Vector
Vector }

Box -> Rendering
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still george
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turn
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turnBox : Box -> Box
turnBox { a, b, ¢ } = {

!

= add a b

N T Q
1l
(@)

neg b }

?

turn : Picture -> Picture
turn p = turnBox >> p
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turn >> turn
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turn >> turn >> turn
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turn >> turn >> turn >> turn
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flip
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flipBox : Box -> Box
flipBox { a, b, ¢ } = {

!

= add a b
neg b
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flip : Picture -> Picture
flip p = flipBox >> p
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flip >> flip
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tossBox : Box -> Box
tossBox { a, b, ¢ } =

{ a = add a (scale 0.5 (add b c))
b = scale 0.5 (add b c)
., c = scale 0.5 (sub c b) }

toss : Picture -> Picture
toss p = tossBox >> p
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above george ((turn >> turn) george)
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aboveRatio : Int -> Int -> Pic -> Pic -> Pic
aboveRatio m n pl p2 =
\box ->

let

f=m/ (m+n)

(b1, b2) = splitVertically f box
1n

(pl1 bl) ++ (p2 b2)

above : Pic -> Pic -> Pic
above pl p2 = aboveRatio 1 1
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above george ((turn >> turn) george)
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above george ((turn >> turn) george)
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mirrorgeorge
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mirrorgeorge
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aboveRatio 2 1 mirrorgeorge george
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beside (flip george) george
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quartet gl g2 g3 g4
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quartet : P -> P ->P -> P -> P
quartet nw ne sw se =
above (beside nw ne)
(beside sw se)
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nonet henders on
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nonet : P ->P->P->P->P->P->P->P->P ->P
let
row w m e = besideRatio 1 2 w (beside m e)

col n ms = aboveRatio 1 2 n (above m s)
1in

col (row nw nm ne)
(row mw mm me)
(row sw sm se)
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nonets are just pilctures
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a fish picture
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over fish ((turn >> turn) fish)
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over : Pic -> Pic -> Pic
over pl p2
\box -> pl box ++ p2 box
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ttile
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ttile : Picture -> Picture

ttile p =
let
pn = (toss >> flip) p
pe = (turn >> turn >> turn) p
in

over p (over pn pe)
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utile
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utile : Picture -> Picture

utile p =
let
on = (toss >> flip) p
ow = turn pn
DS = turn pw
pe = turn ps
1n

over pn (over pw (over ps pe))
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side 0
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side 1
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side 3
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side : Int -> Picture -> Picture

side n p =
1f n <= @ then blank
else
let
s = side (n - 1) p
t = ttile p
1n

quartet s s (turn t) t
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corner 0
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corner 1
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corner 2
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corner : Int -> Picture -> Picture
corner n p =
1f n <= 0 then blank
else
let
c = corner (n - 1) p
s = side (n - 1) p
1n

quartet ¢ s (turn s) (utile p)
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square-limit 0
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square-limit 2
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square-limit 3
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squarelLimit : Int -> Picture -> Picture
squareLimit n p =

let
mm = utile p
nw = corner n p
sw = turn nw
se = turn sw
ne = turn se
nm = side n p
mw = turn nm
sm = turn mw
me = turn sm

1n

nonet nw Nnm ne mw mm me Sw Sm Se
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A picture needs to be rendered
on a printer or a screen by a
device that expects to be given
a sequence of commands.
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Programming that sequence of commands
directly 1s much harder than having
an application generate the commands
automatically from the simpler,
denotational description.
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The pictures were drawn by a
Java program which generated
PostScript commands directly.
The Java was written 1n a
functional style so that the
definitions which were executed
were exactly as they appear 1n
the paper.
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The pictures were drawn by a
PostScript program which generated
PostScript commands directly.

The PostScript was written 1n a
functional style so that the
definitions which were executed

were not unlike as they appear 1n
the paper.
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It probably 1s true that PostScript
1s not everyone's first cholce as a
programming language. But let's put
that premise behind us, and assume
that you need (or want) to write a
program 1n the PostScript language.




