
#CodeBEAMSTO

Lux - synchronised testing of
concurrent sessions

Håkan Mattsson, Cons T Åhs

#CodeBEAMSTO

Lux
• Test tool (written in Erlang - that’s why we’re here)

• System level testing

• A test script is a sequence of input and expected output (regexp)

• Allows for scenarios with multiple concurrent sessions

• Each session is a “shell” — anything taking textual commands and
producing textual output

!2

#CodeBEAMSTO

Scope
• Good fit for:

• system level tests, text based interaction

• simple, regular expression based output

• orchestration of concurrent sessions

• Bad fit for:

• GUI

• structured output that cannot be handled by regexp

!3

#CodeBEAMSTO

Simple example
• Sequential session with a series of

sending input and matching output

• Matching serves both as verifying
output and synchronisation, i.e., don’t
feed new input until at a known state

• Possible to have both several lines of
sending or matching in sequence

!4

[doc Demo a single shell]

Start a shell
[shell server]
 # Send text to the active shell
 !erl -pa ../../../chatty/ebin

 # Match output from the active shell
 ?Erlang/OTP.*
 ?Eshell.*
 ?1>

 !chatty:server().
 ?Starting server
 ?2>

 !halt(3).
 ?SH-PROMPT:

 !echo "===$?==="
 ?===3===
 ?SH-PROMPT:

#CodeBEAMSTO

The world according to Lux

• Execute test script one line at a time

• !.. — Feed input to shell

• ?.. — Wait for successful match before proceeding

• Fail if no match found

• Record what’s happening in log files

!5

Luxtest script

Input
Output
(logs)

#CodeBEAMSTO

One shell view

!6

script Lux

[shell erlang]
!erl
?[0-9]*>
! … erlang

stdout/errstdin

• A match is successful
when the regexp is found in
the output

• Future matching is done
from the point after the last
match

• Not all output needs to be
matched

• A match fails when
matching output has not
been found within some
specified time

#CodeBEAMSTO

Example: chat server and clients

!7

server

log file

client

client

client

#CodeBEAMSTO

Example: chat server and clients

!8

(9) chatty > erl -pa ebin -noshell -sname mytopic -s chatty server
Starting server mytopic …
Trying to open log file chatty_mytopic.log...ok.

(5) chatty > erl -pa ebin -sname cons -noshell -s chatty client mytopic
Trying to join the mytopic chat room...
Welcome to the chat room mytopic!!!
Enter text and press enter. Exit chat with ^d.
cons>

(3) chatty > erl -pa ebin -sname hawk -noshell -s chatty client mytopic
Trying to join the mytopic chat room...
Welcome to the chat room mytopic!!!
Enter text and press enter. Exit chat with ^d.
hawk>

hawk: Client joined.
cons> ping
cons>

cons: ping
hawk>

hawk: pong
cons>

pong
hawk>

#CodeBEAMSTO

When in doubt: automate!
• One Lux shell for each

terminal

• Mimic the sequence of
interactions from the
manual session

!9

[shell server]
 !erl -pa $ebin -sname $topic -s chatty server
 ?Starting server

[shell cons]
 !erl -pa $ebin -sname cons -noshell -s chatty client $topic
 ?cons>

[shell hawk]
 !erl -pa $ebin -sname hawk -noshell -s chatty client $topic
 ?hawk>

[shell cons]
 ?hawk: Client joined
 !ping

[shell hawk]
 ?cons: ping
 !pong

[shell cons]
 ?hawk: pong

#CodeBEAMSTO

test case : naive.lux
progress : ..:..:.:..:..:.:..:.:.:....:.:..:.:..:..:.:..:.:.:.:.:.:.:.:.:.
13????13..
result : FAIL at 13 in shell cons
expected*
 cons>
actual match_timeout
 erl -pa ../../../chatty/ebin -sname cons -noshell -s chatty client mytopic
 Trying to join the mytopic chat room...
 <ERROR> Failed to join 'mytopic@CAHS-M-K1Y7'. Is the server started?
 {"init terminating in do_boot",shutdown}
 init terminating in do_boot (shutdown)

Lux is faster than you

!10

expected prompt

#CodeBEAMSTO

[shell server]
 !erl -pa $ebin -sname $topic -s chatty server
 ?Starting server

[shell cons]
 !erl -pa $ebin -sname cons -noshell -s chatty client $topic
 ?cons>

[shell hawk]
 !erl -pa $ebin -sname hawk -noshell -s chatty client $topic
 ?hawk>

[shell cons]
 ?hawk: Client joined
 !ping

[shell hawk]
 ?cons: ping
 !pong

[shell cons]
 ?hawk: pong

Multi shell execution
• The shell command switches the

shell being used

• A shell not ending with a match
will just proceed to the next shell
(and the program kept running)

• We need the possibility to know
when the server has been
started before proceeding

• Matching serves as
synchronisation

!11

#CodeBEAMSTO

[shell server]
 !rm -f chatty_mytopic.log
 ?SH-PROMPT
 !erl -pa $ebin -sname $topic -s chatty server
 ?Starting server

[shell logger]
 !tail -F chatty_mytopic.log
 ?Server started

[shell cons]
 !erl -pa $ebin -sname cons -noshell -s chatty client $topic
 ?cons>

Proper synchronisation

!12

bookkeeping

wait for server to start

#CodeBEAMSTO

Multiple shells view

!13

script Lux

server

[shell server]
!…

[shell client-1]
!..

[shell client-2]
!..

client-1 client-2

[shell erlang]
!erl
?[0-9]*>
! …

#CodeBEAMSTO

Test cases lead to..
• Automating manual tests, running them and see them fail will give us a

number of test cases after a while. Put each in its own file.

• start client with no server — client-start.lux

• start server and clients, verify connection — server-start.lux

• test interaction — interact.lux

• ..

!14

#CodeBEAMSTO

..Test Suites
• Lux can run a number of test cases in a test suite

• results are collected

• normal test case hygiene needed to not have interacting test cases

• don’t use data from other test cases

• don’t overwrite results from previous test (save them before it
happens)

!15

#CodeBEAMSTO

When tests fail
• A test case will fail when a required match is not seen

• Reported as a match timeout as the timer expired

• Lux will show the line of failure (with a “call stack” if needed)

• Use the logs!

!16

#CodeBEAMSTO

The truth is in the logs..
• Running a Lux script simple.lux with a single shell called server will by

default produce 12 log files

• simple.lux.server.stdout.log — bytes received from stdout (and stderr) of the
shell named server

• simple.lux.server.stdin.log — bytes sent to stdin of the shell named server

• simple.lux.event.log — trace of internal Lux events

• simple.lux.event.log.html — pretty printed event log with links to other logs

• simple.lux.event.log.csv — low level info about actual duration of timers

!17

#CodeBEAMSTO

The truth is in the logs..
• simple.lux.config.log - test case specific configuration

• simple.lux.orig — the test script itself

• lux_config.log —general configuration for the entire test suite

• lux_summary.log — summary of the outcome of the test (suite)

• lux_summary.log.html — same in html

• lux.tap — summary log on TAP format

!18

#CodeBEAMSTO

Matching in different flavours
• use regular expressions for matching

• ? - with regexps and variable expansion

• ?? - without regexps, with variable expansion

• ??? - verbatim, no regexps, no variable expansion

• “““ — start multiline match

!19

#CodeBEAMSTO

Extract sub patterns

!20

(9) chatty > erl -pa ebin -noshell -sname mytopic -s chatty server
Starting server mytopic …
Trying to open log file chatty_mytopic.log...ok.

Save to variable

[shell server]
 !erl -pa $ebin -sname $topic -s chatty server
 ?Starting server

 # Match sub-expressions
 ?Trying to open log file (.*)\.\.\.ok.
 [global logfile=$1]

Start another shell
[shell server-log]
 # Match in log file
 !tail -F $logfile
 ?Server started

Use it

#CodeBEAMSTO

Fail patterns
• Ordinary matching is positive, i.e., we want

to verify that we see certain patterns

• There might also be strings that we don’t
want to see and fail directly when we do

• A fail pattern can be defined for each shell

• If the fail pattern is seen, the test case fails

!21

[global fail_pattern=[Ee][Rr][Rr][Oo][Rr]]

[shell eshell]
 -$fail_pattern|SH-PROMPT:
 !erl -s badmod
 ?Erlang/OTP
 ?1>
 !goodmod:start().
 ?2>

#CodeBEAMSTO

Variables
• Different scope

• local (for shell), global (for all shells), macro local

• matching against contents of variable makes it convenient for matching
changing parts, such as prompts

• numeric variable names are parts of last match

!22

#CodeBEAMSTO

Macros
• Abstraction possible by use of macros with

arguments

• Define a sequence of Lux commands
executed in the context of the invoking shell

• Makes scripts compact, abstract and
introduces reusability

!23

[macro ok]
!echo =$?=
?=0=

[endmacro]

[macro prompt user]
?^$user>

[endmacro]

[shell cons]
[local me=cons]
[invoke start-client $me]
[invoke prompt $me]

!$_CTRL_D_
[invoke ok]

#CodeBEAMSTO

Additional Convenience
• Loops

• allows for iterating over items, with the possibility to end as soon as a
certain pattern has been seen

• Configurable timeout

• Special cleanup shell

• always executed, regardless of whether the tests succeeds or fails

• used to terminate running programs, saving logs, checking general
conditions on exit etc

!24

#CodeBEAMSTO

Implementation
• Lux is implemented (almost) entirely in Erlang

• Concurrency - simple controlling of several shells

• Port programs - simple running of external programs

• Built in regular expression - Lux does a lot of matching..

• Timers are simple

!25

#CodeBEAMSTO

Implementation

!26

script Lux

[shell server]
!erl
?[0-9]*>
! … server

stdout/errstdin

!26

#CodeBEAMSTO

Implementation

!27

port program

lux interpreter

runpty (C)

shell
process

bourne shell

manipulate terminal settings
make bourne shell believe it is interactive
normalise output
echo input
redirect stderr to stdout

where the actual “shell” is run

stdin

stdout/err

timer

#CodeBEAMSTO

Debugging test cases
• Interactive debugger with the possibility to

• Run in verbose mode

• Break at specified line numbers

• Single step

• Connect to and interact with a shell

• View logs

!28

Run the test case and stop before line 1:
> lux -d a_simple_server.lux
summary log : /Users/hmattsso/dev/lux/tutorial/chatty/test/intro/tmp_logs/lux_summary.log

test case : a_simple_server.lux
progress :

Debugging test cases

#CodeBEAMSTO

#CodeBEAMSTO

Infrastructure support
• Skip test cases on some or all architectures

• Mark test cases as unstable on some or all architectures

• Logs on TAP format can be generated

• Logs on JUnit format can be generated

• History of multiple test runs can be assembled and visualized

!30

#CodeBEAMSTO

Visualisation

!31

#CodeBEAMSTO

Use at Cisco, Stockholm office
• ConfD - device configuration

• Model driven configuration management framework for a network element

• Render northbound interfaces such as CLI, NETCONF, SNMP, Rest, RestConf

• Tracable internal interfaces

• NSO - Network Service Orchestrator

• massive number of heterogeneous network elements

• same northbound interfaces as ConfD, standard southbound interfaces

• adapters (NEDs) for network elements lacking standard interfaces

!32

#CodeBEAMSTO

Use at Cisco, Stockholm office
• Lux widely used for testing ConfD and NSO

• Automated test environment using Jenkins

• ConfD needs to be tested on different architectures and OSes

• More than 4000 test cases written in Lux

• We also use eunit, common test, JUnit, hand written tests..

• No scheduled manual testing before release

!33

#CodeBEAMSTO

Download Lux
• github.com/hawk/lux (Apache license)

• Tutorial in directory tutorial

• Source code from this presentation in directory tutorial/chatty

!34

http://github.com/hawk/lux

#CodeBEAMSTO
!35

Questions?

Thank you

#CodeBEAMSTO

Extras

!37

