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joke(funny), % laugh
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Who invented Prolog?

“ 1. The world is everything that is the case.

1.1 The world is the totality of facts, not of things.

1.11 The world is determined by the facts, and by these being all the facts. ”

– Ludwig Wittgenstein, 1918
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Who invented Prolog?
(for real)

I appeared in the early 70s in France

I original developers: Alain Colmerauer and Philippe Roussel

I used the .pl extension before Perl

I radically different programming paradigm
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A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!
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Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility
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A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules
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A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

neighbour(X, Y) :-
location(X, Z), location(Y, Z).
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A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

is_in(X, Y) :- location(X, Y).
is_in(X, Y) :- location(X, Z), is_in(Z, Y).
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Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?
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Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

Hello, Alain!
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Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

Hello, Joe!
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Erlang, inspired by Prolog

“ The first interpreter was a simple Prolog meta interpreter which added the no-

tion of a suspendable process to Prolog ... [it] was rapidly modified (and re-

written) ... ”
– Armstrong, Virding, Williams: Use of Prolog for developing a new programming language
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talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).
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Bi-directional computing

f : I → O

R : (I× O) → {0, 1}
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Bi-directional computing

Scala

def append[A](xs: List[A], ys: List[A]): List[A]

Prolog
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Bi-directional computing

Scala

def append[A](xs: List[A], ys: List[A]): List[A]

Prolog

append(?List1, ?List2, ?List1AndList2)
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Bi-directional computing

Scala

def appendAll[A](xss: List[List[A]]): List[A]

Prolog
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Bi-directional computing

Scala

def appendAll[A](xss: List[List[A]]): List[A]

Prolog

append_all(+ListOfLists, ?List)
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Mode signatures
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Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.
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Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.

?- use_module(library(clpfd)).
?- X #> Y, X in 1..3, Y = 2.
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Constraint solving

Puzzle

There are five houses.

1. The English person lives in the red house.

2. The Swedish person owns a dog.

3. The Danish person likes to drink tea.

4. The green house is left to the white house.

5. The owner of the green house drinks coffee.

6. ...
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Grammars

s --> np, vp.
np --> d, n.
d --> [the].
d --> [a].
vp --> v, np.
n --> [dog].
n --> [bone].
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s --> np, vp.
np --> d, n.
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vp --> v, np.
n --> [dog].
n --> [bone].
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Prolog is for parsing?

“ The programming language ... was born of a project aimed not at producing

a programming language but at processing natural languages; in this case,

French. ”
– Colmerauer, Roussel: The Birth of Prolog
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Parsing

Scala

type Parser[A] = String => List[(A, String)]

+ monad syntax

Prolog

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax
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?- talk(lars).
true.

 larsrh

 larsr_h

 lars.hupel.info

https://lars.hupel.info


Image sources

I Prolog coffee: Marek Kubica

I Shiba row: https://www.pinterest.de/pin/424112489894679416/
I Shiba with mlem: https://www.reddit.com/r/mlem/comments/6tc1of/shibe_doing_a_mlem/
I Happy dog: https://www.rover.com/blog/is-my-dog-happy/
I Kid with crossed arms: https://www.psychologytoday.com/us/blog/spycatcher/201410/

9-truths-exposing-myth-about-body-language
I Noam Chomsky: https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
I Alain Colmerauer: https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
I Joe Armstrong: Erlang, the Movie

I Signatures: http://www.swi-prolog.org/pldoc/man?section=preddesc
I Zebra puzzle: StackOverflow contributors (https://stackoverflow.com/q/11122814/4776939)
I Asking dog: https://www.quickanddirtytips.com/pets/dog-behavior/

how-to-teach-your-dog-tricks-and-manners-with-targeting
I Owl: https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/
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