
Programmation en Logique

Lars Hupel

November 8th, 2018





talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Who invented Prolog?

“ 1. The world is everything that is the case.

1.1 The world is the totality of facts, not of things.

1.11 The world is determined by the facts, and by these being all the facts. ”

– Ludwig Wittgenstein, 1918

4



Who invented Prolog?

“ 1. The world is everything that is the case.

1.1 The world is the totality of facts, not of things.

1.11 The world is determined by the facts, and by these being all the facts. ”
– Ludwig Wittgenstein, 1918

4



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Who invented Prolog?
(for real)

I appeared in the early 70s in France

I original developers: Alain Colmerauer and Philippe Roussel

I used the .pl extension before Perl

I radically different programming paradigm

6



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

3. Rules can have conditions.

4. Programs can be queried.

5. Anything that is not in the program is not true.

6. Queries may alter the program

Just like in SQL!

7



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world).

?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



Hello World!

Program

hi.

Interpreter

?- hi.
true.

hello(world). ?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Variables: upper-case

Rest: lower-case

This used to be yes/no, for

100% toddler compatibility

8



A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

9



A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

9
EU Customs Union

Council of Europe

European Union

EEA

BSEC

Eurozone

Benelux

Baltic Assembly

EFTA

GUAM

CEFTA

Schengen Area Union State

Nordic
Council

Visegrád
Group

Common
Travel Area

Monetary agreement
with the EU



A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

9



A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

neighbour(X, Y) :-
location(X, Z), location(Y, Z).

9



A small program

Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

is_in(X, Y) :- location(X, Y).
is_in(X, Y) :- location(X, Z), is_in(Z, Y).

9



Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

10



Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

10



Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

Hello, Alain!

10



Prolog syntax

What’s with the weird syntax?

Is it stolen from Erlang?

Hello, Joe!

10



Erlang, inspired by Prolog

“ The first interpreter was a simple Prolog meta interpreter which added the no-

tion of a suspendable process to Prolog ... [it] was rapidly modified (and re-

written) ... ”
– Armstrong, Virding, Williams: Use of Prolog for developing a new programming language

11



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Backtracking

best_boy(X) :-
dog(good, X),
colour(dark_brown, X),
behind(X, Y),
colour(light_brown, Y).

13



Bi-directional computing

f : I → O

R : (I× O) → {0, 1}

14



Bi-directional computing

f : I → O

R : (I× O) → {0, 1}

14



Bi-directional computing

f : I → O

R : (I× O) → {0, 1}

14



Bi-directional computing

Scala

def append[A](xs: List[A], ys: List[A]): List[A]

Prolog

15



Bi-directional computing

Scala

def append[A](xs: List[A], ys: List[A]): List[A]

Prolog

append(?List1, ?List2, ?List1AndList2)

15



Bi-directional computing

Scala

def appendAll[A](xss: List[List[A]]): List[A]

Prolog

15



Bi-directional computing

Scala

def appendAll[A](xss: List[List[A]]): List[A]

Prolog

append_all(+ListOfLists, ?List)

15



Mode signatures

16



Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.

17



Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.

?- X > Y, member(X, [1, 2, 3]), Y = 2.

17



Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.

?- X > Y, member(X, [1, 2, 3]), Y = 2.

17



Not a silver bullet ...

?- member(X, [1, 2, 3]), Y = 2, X > Y.
X = 3, Y = 2.

?- use_module(library(clpfd)).
?- X #> Y, X in 1..3, Y = 2.

17



Constraint solving

Puzzle

There are five houses.

1. The English person lives in the red house.

2. The Swedish person owns a dog.

3. The Danish person likes to drink tea.

4. The green house is left to the white house.

5. The owner of the green house drinks coffee.

6. ...

18



Grammars

s --> np, vp.
np --> d, n.
d --> [the].
d --> [a].
vp --> v, np.
n --> [dog].
n --> [bone].

19



Grammars

s --> np, vp.
np --> d, n.
d --> [the].
d --> [a].
vp --> v, np.
n --> [dog].
n --> [bone].

19



Grammars

s --> np, vp.
np --> d, n.
d --> [the].
d --> [a].
vp --> v, np.
n --> [dog].
n --> [bone].

19



Grammars

s --> np, vp.
np --> d, n.
d --> [the].
d --> [a].
vp --> v, np.
n --> [dog].
n --> [bone].

19



Prolog is for parsing?

“ The programming language ... was born of a project aimed not at producing

a programming language but at processing natural languages; in this case,

French. ”
– Colmerauer, Roussel: The Birth of Prolog

20



Prolog is for parsing?

“ The programming language ... was born of a project aimed not at producing

a programming language but at processing natural languages; in this case,

French. ”
– Colmerauer, Roussel: The Birth of Prolog

20



Parsing

Scala

type Parser[A] = String => List[(A, String)]

+ monad syntax

Prolog

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax

21



Parsing

Scala

type Parser[A] = String => List[(A, String)]

+ monad syntax

Prolog

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax

21



Parsing

Scala

type Parser[A] = String => List[(A, String)]

+ monad syntax

Prolog

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax

21



Parsing

Scala

type Parser[A] = String => List[(A, String)]

+ monad syntax

Prolog

parse(?A, ?ListIn, ?ListOut)

+ DCG syntax

21



talk(lars) :-
joke(funny), % laugh
introduction(prolog),
features(cool),
audience(Questions),
answer(Questions).



?- talk(lars).
true.

 larsrh

 larsr_h

 lars.hupel.info

https://lars.hupel.info


Image sources

I Prolog coffee: Marek Kubica

I Shiba row: https://www.pinterest.de/pin/424112489894679416/
I Shiba with mlem: https://www.reddit.com/r/mlem/comments/6tc1of/shibe_doing_a_mlem/
I Happy dog: https://www.rover.com/blog/is-my-dog-happy/
I Kid with crossed arms: https://www.psychologytoday.com/us/blog/spycatcher/201410/

9-truths-exposing-myth-about-body-language
I Noam Chomsky: https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
I Alain Colmerauer: https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
I Joe Armstrong: Erlang, the Movie

I Signatures: http://www.swi-prolog.org/pldoc/man?section=preddesc
I Zebra puzzle: StackOverflow contributors (https://stackoverflow.com/q/11122814/4776939)
I Asking dog: https://www.quickanddirtytips.com/pets/dog-behavior/

how-to-teach-your-dog-tricks-and-manners-with-targeting
I Owl: https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/

24

https://www.pinterest.de/pin/424112489894679416/
https://www.reddit.com/r/mlem/comments/6tc1of/shibe_doing_a_mlem/
https://www.rover.com/blog/is-my-dog-happy/
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
http://www.swi-prolog.org/pldoc/man?section=preddesc
https://stackoverflow.com/q/11122814/4776939
https://www.quickanddirtytips.com/pets/dog-behavior/how-to-teach-your-dog-tricks-and-manners-with-targeting
https://www.quickanddirtytips.com/pets/dog-behavior/how-to-teach-your-dog-tricks-and-manners-with-targeting
https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/

