Programmation en Logique

Lars Hupel

November 8th, 2018

COBE
MESH
0 58 B

talk(lars) :-
joke (funny),
introduction(prolog),
features(cool),
audience(Questions),
answer (Questions).

talk(lars) :-
joke (funny),
introduction(prolog),
features(cool),
audience(Questions),
answer (Questions).

Who invented Prolog?

€€ 1. The world is everything that is the case.
1.1 The world is the totality of facts, not of things.
1.11 The world is determined by the facts, and by these being all the facts.

b5

Who invented Prolog? o TETbmer
TRACTATUS
LoGico-
PHILOSOPHICUS

€€ 1. The world is everything that is the case.
1.1 The world is the totality of facts, not of things. 2
1.11 The world is determined by the facts, and by these being all the facts.

— Ludwig Wittgenstein, 1918

talk(lars) :-
joke (funny),
introduction(prolog),
features(cool),
audience(Questions),
answer (Questions).

Who invented Prolog?

(for real)

vvyYyy

appeared in the early 70s in France
original developers: Alain Colmerauer and Philippe Roussel
used the . pl extension before Perl

radically different programming paradigm

A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).

2. Rules can have arguments.

A brief primer on Prolog

1. Prolog programs are sequences of rules (or clauses).
2. Rules can have arguments.

3. Rules can have conditions.

A brief primer on Prolog

A w N R

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.
Rules can have conditions.

Programs can be queried.

A brief primer on Prolog

o A w N e

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried.

Anything that is not in the program is not true.

A brief primer on Prolog

o v M w N e

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried.

Anything that is not in the program is not true.

Queries may alter the program &

A brief primer on Prolog

o v M w N e

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried. ‘ Just like in SQL! ‘

Anything that is not in the program is r%u/e_
Queries may alter the program & &

Hello World!

Program

hi.

Hello World!

Program Interpreter

hi. ?- hi.
true.

Hello World!

Program Interpreter
hi. ?- hi.
true.

hello(world).

Hello World!

Program

hi.

hello(world).

Interpreter

?- hi.
true.

?- hello(world).
true.

Hello World!

Program

hi.

hello(world).

Interpreter

?- hi.

true.

?- hello(world).
true.

?- hello(coworld).
false.

Hello World!

Program

hi.

hello(world).

Interpre

?- hi.

true.

?- hel
true.

?- hel
false.

This used to be yes/no, for
100% toddler compatibility

(coworld).

Hello World!

Program

hi.

hello(world).

Interpreter

?- hi.

true.

?- hello(world).
true.

?- hello(coworld).
false.

?- hello(X).
X = world.

Hello World!

Program Interpreter

hi. ?- hi.
true.

hello(world). ?- hello(world).
true.

Variables: upper-case

?7- hello(c
(Rest: lower-case
false.

7- hello(Xff/%é;/

X = world.

A small program
Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

A small program

Facts

Council of Europe
1ocat-ion(mun1. Ch, germany) . (SchengenArea

location(augsburg, germanyfl| [[E2

location(germany, europe). Ha [:= E:)ﬁ:[gm
location(london, unitedkin Nordch Visegrad J
location(unitedkingdom, eu Councll) \Sroup

EFTA
Baltlc Asse E

[gj Common []:u
\EEA Eurozone Travel Area

European Union m
i ‘ E Monetary agreement
EU Customs Union with the EU

A small program
Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

A small program
Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

neighbour (X, Y) :-
location(X, Z), location(Y, Z).

A small program
Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

is_in(X, Y) :- location(X, Y).
is_in(X, Y) :- location(X, Z), dis_in(Z, Y).

Prolog syntax

What's with the weird syntax?

Prolog syntax

What's with the weird syntax?

Is it stolen from Erlang?

Prolog syntax

Hello, Alain!
What's with the weird syntax?

Is it stolen from Erlang?

Prolog syntax

1 1 H 7
What's with the weird syntax? =il [focl

Is it stolen from Erlang?

Erlang, inspired by Prolog

€€ The first interpreter was a simple Prolog meta interpreter which added the no-
tion of a suspendable process to Prolog ... [it] was rapidly modified (and re- 2
written) ...

— Armstrong, Virding, Williams: Use of Prolog for developing a new programming language

talk(lars) :-
joke (funny),
introduction(prolog),
features(cool),
audience(Questions),
answer (Questions).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind(X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind (X, Y),
colour (light_brown, Y).

Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
behind(X, Y),
colour (light_brown, Y).

Bi-directional computing

- — 0

Bi-directional computing

- — 0

Bi-directional computing

"R: (I x0)—{0,1}

Bi-directional computing

Scala

def append[A](xs: List[A], ys:

List[A]):

List[A]

Bi-directional computing

Scala

def append[A](xs: List[A], ys: List[A]):

Prolog

append(?Listl, ?List2, ?ListlAndList2)

List[A]

Bi-directional computing

Scala

def appendAl1[A](xss: List[List[A]]): List[A]

Bi-directional computing

Scala

def appendAll[A] (xss: List[List[A]l]):

Prolog

append_all(+ListOfLists, ?List)

List[A]

Mode signatures

Argument must be ground, i.e., the argument may not contain a variable anywhere.

Argument must be fully instantiated to a term that satisfies the type. Thisis not
necessarily ground, e.g., the term [_] is a list, althaugh its only member is unbound.

Argument is an outputargument. Unless specified otherwise, output arguments need not
to be unbound. For example, the goal findallix, Goal. [T1} is good style and equivalent
to findall(x, Goal, ¥s), xs = [T)* Nate that the determinism specification, e.g,,

" "det” only applies if this argument is unbound.

Argument must be unbound. Typically used by predicates that create " something' and
return a handle to the created object, such as open/3 which creates a stream.

Argument must be bound to a partial term of the indicated type. Note that a variable is a
partial term for any type. Think of the argument as either input ar eutput or bothinput
and output. Forexample, in stream_property(S, reposition(Eool)},the reposition part
of the term is input and the uninstantiated Boolis output.

Argument is a meta-argument. Implies +. See chapter 6 for more information on module
handling.

Argument is not further instantiated. Typically used for type tests.

Argument contains a mutable structure that may be modified using setarg/3 or
nb_setarg/3.

Not a silver bullet ...

?- member (X, [1, 2, 3]), Y =2, X > Y.
X =3,V =2.

Not a silver bullet ...

?- member (X, [1, 2, 3]), Y =2, X > Y.
X =3,V = 2.

?7- X > Y, member(X, [1, 2, 3]), Y = 2.

Not a silver bullet ...

?- member (X, [1, 2, 3]), Y =2, X > V.
X =3, Y =2.

?7- X > Y, member(X, [1, 2, 3]), Y = 2.

Not a silver bullet ...

?- member (X, [1, 2, 3]), Y =2, X > Y.
X =3,V = 2.

?- use_module(library(clpfd)).
?7- X #> Y, X in 1..3, Y = 2.

Constraint solving

Puzzle
There are five houses.

1. The English person lives in the red house.
The Swedish person owns a dog.
The Danish person likes to drink tea.

The green house is left to the white house.

o v M w N

The owner of the green house drinks coffee.

Grammars

2
o
£
£
S
O

Grammars

Grammars

S
/\
NP VP
/N N\
D N V NP

N

|
the dog ate D N
|

the bone

S -=> np, vp.
np --> d, n.

d —-> [the].
d -——> [a].

vp -=> v, np.
n —--> [dog].

n —-—> [bone].

Prolog is for parsing?

€€ The programming language ... was born of a project aimed not at producing
a programming language but at processing natural languages; in this case, 2
French.

— Colmerauer, Roussel: The Birth of Prolog

20

Prolog is for parsing?

€€ The programming language ... was born of a project aimed not at producing
a programming language but at processing natural languages; in this case, 2
French.

— Colmerauer, Roussel: The Birth of Prolog

20

Parsing

Scala

type Parser[A] = String => List[(A, String)]

Parsing

Scala

type Parser[A] = String => List[(A, String)]

Prolog

parse(?A, ?ListIn, ?ListOut)

21

Parsing

Scala

type Parser[A] = String => List[(A, String)]

Prolog

parse(?A, ?ListIn, ?ListOut)

+ monad syntax

21

Parsing

Scala

type Parser[A] = String => List[(A, String)]

Prolog

parse(?A, ?ListIn, ?ListOut)

+ monad syntax

+ DCG syntax

21

talk(lars) :-
joke(funny), % Llaugh
introduction(prolog),
features(cool),
audience(Questions),
answer (Questions).

?7- talk(lars).
true.
O larsrh

¥ larsr_h
A lars.hupel.info

https://lars.hupel.info

Image

vVVvyYvYyVvyy

vyVvyVvyVvYyVyvyy

v

sources

Prolog coffee: Marek Kubica

Shiba row: https://www.pinterest.de/pin/424112489894679416/

Shiba with mlem: https://www.reddit.com/r/mlem/comments/6tclof/shibe_doing_a_mlem/
Happy dog: https://www.rover.com/blog/is-my-dog-happy/

Kid with crossed arms: https://www.psychologytoday.com/us/blog/spycatcher/201410/
9-truths-exposing-myth-about-body-language

Noam Chomsky: https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
Alain Colmerauer: https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
Joe Armstrong: Erlang, the Movie

Signatures: http://www.swi-prolog.org/pldoc/man?section=preddesc

Zebra puzzle: StackOverflow contributors (https://stackoverflow.com/q/11122814/4776939)

Asking dog: https://www.quickanddirtytips.com/pets/dog-behavior/
how-to-teach-your-dog-tricks-and-manners-with-targeting

Owl: https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/

24

https://www.pinterest.de/pin/424112489894679416/
https://www.reddit.com/r/mlem/comments/6tc1of/shibe_doing_a_mlem/
https://www.rover.com/blog/is-my-dog-happy/
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://www.psychologytoday.com/us/blog/spycatcher/201410/9-truths-exposing-myth-about-body-language
https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
http://www.swi-prolog.org/pldoc/man?section=preddesc
https://stackoverflow.com/q/11122814/4776939
https://www.quickanddirtytips.com/pets/dog-behavior/how-to-teach-your-dog-tricks-and-manners-with-targeting
https://www.quickanddirtytips.com/pets/dog-behavior/how-to-teach-your-dog-tricks-and-manners-with-targeting
https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/

