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€€ 1. The world is everything that is the case.
1.1 The world is the totality of facts, not of things. 2
1.11 The world is determined by the facts, and by these being all the facts.

— Ludwig Wittgenstein, 1918
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Who invented Prolog?

(for real)

vvyYyy

appeared in the early 70s in France
original developers: Alain Colmerauer and Philippe Roussel
used the . pl extension before Perl

radically different programming paradigm
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A brief primer on Prolog

o v M w N e

Prolog programs are sequences of rules (or clauses).
Rules can have arguments.

Rules can have conditions.

Programs can be queried. ‘ Just like in SQL! ‘

Anything that is not in the program is r%u/e_
Queries may alter the program & &
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Hello World!

Program Interpreter

hi. ?- hi.
true.

hello(world). ?- hello(world).
true.

Variables: upper-case

?7- hello(c
( Rest: lower-case
false.

7- hello(Xff/%é;/

X = world.
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A small program
Facts

location(munich, germany).
location(augsburg, germany).
location(germany, europe).
location(london, unitedkingdom).
location(unitedkingdom, europe).

Rules

is_in(X, Y) :- location(X, Y).
is_in(X, Y) :- location(X, Z), dis_in(Z, Y).
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Hello, Alain!
What's with the weird syntax?

Is it stolen from Erlang?




Prolog syntax

1 1 H 7
What's with the weird syntax? =il [focl

Is it stolen from Erlang?




Erlang, inspired by Prolog

€€ The first interpreter was a simple Prolog meta interpreter which added the no-
tion of a suspendable process to Prolog ... [it] was rapidly modified (and re- 2
written) ...

— Armstrong, Virding, Williams: Use of Prolog for developing a new programming language
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Backtracking

best_boy(X) :-
dog(good, X),
colour (dark_brown, X),
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Bi-directional computing

"R: (I x0)—{0,1}
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def append[A](xs: List[A], ys:

List[A]):
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Scala

def append[A](xs: List[A], ys: List[A]):

Prolog

append(?Listl, ?List2, ?ListlAndList2)

List[A]



Bi-directional computing

Scala

def appendAl1[A](xss: List[List[A]]): List[A]



Bi-directional computing

Scala

def appendAll[A] (xss: List[List[A]l]):

Prolog

append_all(+ListOfLists, ?List)

List[A]



Mode signatures

Argument must be ground, i.e., the argument may not contain a variable anywhere.

Argument must be fully instantiated to a term that satisfies the type. Thisis not
necessarily ground, e.g., the term [_] is a list, althaugh its only member is unbound.

Argument is an outputargument. Unless specified otherwise, output arguments need not
to be unbound. For example, the goal findallix, Goal. [T1} is good style and equivalent
to findall(x, Goal, ¥s), xs = [T)* Nate that the determinism specification, e.g,,

" "det” only applies if this argument is unbound.

Argument must be unbound. Typically used by predicates that create " something' and
return a handle to the created object, such as open/3 which creates a stream.

Argument must be bound to a partial term of the indicated type. Note that a variable is a
partial term for any type. Think of the argument as either input ar eutput or bothinput
and output. Forexample, in stream_property(S, reposition(Eool)},the reposition part
of the term is input and the uninstantiated Boolis output.

Argument is a meta-argument. Implies +. See chapter 6 for more information on module
handling.

Argument is not further instantiated. Typically used for type tests.

Argument contains a mutable structure that may be modified using setarg/3 or
nb_setarg/3.
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Not a silver bullet ...

?- member (X, [1, 2, 3]), Y =2, X > Y.
X =3,V = 2.

?- use_module(library(clpfd)).
?7- X #> Y, X in 1..3, Y = 2.



Constraint solving

Puzzle
There are five houses.

1. The English person lives in the red house.
The Swedish person owns a dog.
The Danish person likes to drink tea.

The green house is left to the white house.

o v M w N

The owner of the green house drinks coffee.
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Grammars

S
/\
NP VP
/N N\
D N V NP

N

|
the dog ate D N
|

the bone

S -=> np, vp.
np --> d, n.

d —-> [the].
d -——> [a].

vp -=> v, np.
n —--> [dog].

n —-—> [bone].



Prolog is for parsing?

€€ The programming language ... was born of a project aimed not at producing
a programming language but at processing natural languages; in this case, 2
French.

— Colmerauer, Roussel: The Birth of Prolog
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Parsing

Scala

type Parser[A] = String => List[(A, String)]

Prolog

parse(?A, ?ListIn, ?ListOut)

+ monad syntax

+ DCG syntax

21
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?7- talk(lars).
true.
O larsrh
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Prolog coffee: Marek Kubica

Shiba row: https://www.pinterest.de/pin/424112489894679416/

Shiba with mlem: https://www.reddit.com/r/mlem/comments/6tclof/shibe_doing_a_mlem/
Happy dog: https://www.rover.com/blog/is-my-dog-happy/

Kid with crossed arms: https://www.psychologytoday.com/us/blog/spycatcher/201410/
9-truths-exposing-myth-about-body-language

Noam Chomsky: https://en.wikipedia.org/wiki/File:Noam_Chomsky_Toronto_2011.jpg
Alain Colmerauer: https://de.wikipedia.org/wiki/Datei:A-Colmerauer_web-800x423.jpg
Joe Armstrong: Erlang, the Movie

Signatures: http://www.swi-prolog.org/pldoc/man?section=preddesc

Zebra puzzle: StackOverflow contributors (https://stackoverflow.com/q/11122814/4776939)

Asking dog: https://www.quickanddirtytips.com/pets/dog-behavior/
how-to-teach-your-dog-tricks-and-manners-with-targeting

Owl: https://www.theloop.ca/angry-owl-terrorizes-oregon-joggers/
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