ALVARO VIDELA - @0LD SOUND

LECTOR IN CODIGO

MICROSOFT

CLEMENTINA

CLEMENTINA

EXPLORE THE RELATION BETWEEN THE
PROCESS OF WRITING COMPUTER
PROGRAMS WITH THAT OF WRITING
LITERARY WORKS OF FICTION.

UMBERTO ECO

LECTOR IN
FABULUA

SIX WALKS IN THE
FICTIONAL WOODS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER™ PROGRAMMERS

WHAT CAN WE LEARN FROM
THESE THEORIES TO BECOME
BETTER™ PROGRAMMERS?

WHAT A
PROGRAMMER DO ES

It has been believed that a program-
mer occasionally writes code and gets
it running on a computer, and that this
is what he is paid for. In spite of his
obvious inefficiency, no one else seems
to do this work more effectively. How-
ever, his activity is still observed prin-
cinally as loafing—a kind of ritudl
(ke the British and teatime) which
must be put up with.

Another view of what a program-
mer does addresses more construc-
tively all that “wasted” time and

cludes more than the running code,
more than the symbolic code, or even
the operator’s guide, the maintenance
guide, or the design guide. For in
fact, in response to any serious
breach of the program’s integrity, a
programmer will become involved, as
part of the integral organization built
by the original programmer. If one
now looks closely, he can begin to
recognize the intent of those steps in

the ritual of programming.

WHAT A
PROGRAMMER DO ES

It has been believed that a program- cludes more than the running code,
mer occasionally writes code and gets more than the symbolic code, or even

BEST UNKNOWN PAPER

(Ii ke the British cnd tecmme) Wthh by the original programmer. f one

must be put up with. now looks closely, he can begin to
Another view of what a program- recognize the intent of those steps in
mer does addresses more construc- the ritual of programming.

tively all that “wasted” time and

"A programmer does not primarily write
code; rather, he primarily writes to
another programmer about his problem
solution”

“Programs must be written for people to
read, and only incidentally for machineS
to execute”

THE USE OF SUB-ROUTINES IN PROGRAMMES

D. J. Wheeler

Cambridge & Illinois Universities

THE USE OF SUB-ROUTINES IN PROGRAMMES
D. J. Wheeler |

Cambridge & Illinois Universities

The asbove remarks may be summarized by
saying sub-routines are very useful-although not
absolutely necessary-and that the prime objectives
to be born in mind when constructing them are

simplicity of use, correctness of codes and accuracy

of description. All complexities should-if possible

~be buried out of sight.

LET'S TALK ABOUT
NODEJS

10 PRINT CHRS (205.5+RND(1)); : GOTO 10

“The presence of these optional spaces
Indicates some concern for the people
who will deal with this code, rather than
merely the machine that will process It”

const http = require('http');

const hostname = '127.0.0.1";
const port = 3000;

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader ('Content-Type', 'text/plain');
res.end('Hello World\n'");

1)

server.listen(port, hostname, () => {
console.log(running at http://%${hostname}:${port}/) ;
1)

const
http=require("http"),hostname="127.0.0.1",port=3e3,serv
er=http.createServer((e,t)=>{t.statusCode=200,t.setHead
er ("Content-Type","text/plain”),t.end("Hello
World\n")}) ;server.listen(3e3,hostname,
()=>{console.log("Server running at http://
127.0.0.1:3000/")});

LITERATURE AND
PROGRAMMING

LITERAIE
PROGRAMMING

nnnnnnnnnn

“Instead of imagining that our main task
1s to Instruct a computer what to do, let
us concentrate rather on explaining to
human beings what we want a computer
to do’

LITERATE PROGRAMMING

» Introduces the WEB system
» Write documentation along with the code

» Partially adopted by tools like JavaDocs and the like

EXPLAINS HOW WEB WORKS,
BUT NOT HOW TO WRITE CODE
THAT'S EASIER TO UNDERSTAND

CYBERTEXT:
PERSPECTIVES ON
ERGODIC LITERATURE

“l...]1 a search for terary value in texts
that are neither intended nor structured
as literature will only obscure the unique
aspects of these texts and transform a
formal investigation into an apologetic
crusade.”

“Programs are normally written with two

kinds of receivers in mind: the machines

and other programmers. This gives rise

to a double standard of aesthetics, often
In conflict: efficiency and clarity

“a difference between writing and
programming, [is that] in programming,
the programmer gets feedback very early
on whether the program text is executable,
during compiling. Furthermore, they get
feedback on whether the program is
working as Intended”

Hermans, Felienne, and Marlies Aldewereld

ABOUT EARLY FEEDBACK

» What does the program means?
» What process of the real world is trying to represent?

» How the problem was solved?

COMPARE THIS WITH
MUSIC INTERPRETATION

La menor (melodica) -

L -
ol | 1 MTEREEROY (ST CSSGLTERD WERGE Y RS TR IR RaasaRS

— ®“~.

1%

(11

) JRSEPOPURNRRNPUINE I | § PP ——

et Bt 2l &l 9

]
-

J
'
’
‘
)
4
[
!
}
]
‘
[
1
4
'
'

“CORRECT GUITAR PLAYING
1S UNCONCEIVABLE WITHOUT
CORRECT FINGERING”

el Carlevaro

La menor (melodica) -

L -
ol | 1 MTEREEROY (ST CSSGLTERD WERGE Y RS TR IR RaasaRS

— ®“~.

1%

(11

) JRSEPOPURNRRNPUINE I | § PP ——

et Bt 2l &l 9

]
-

J
'
’
‘
)
4
[
!
}
]
‘
[
1
4
'
'

ABOUT EARLY FEEDBACK

» Knuth: Is 2 a random number?

» Isa square function that returns a hardcoded 25 a correct
implementation?

» As long as we provide [5, -5] as arguments, it is correct.

» TDD advocates this kind of program building

“Program testing can be used to show
the presence of bugs, but never to show
their absence!

Edsger Dijkstra

ABOUT EARLY FEEDBACK

» Knuth: Is 2 a random number?

» Isa square function that returns a hardcoded 25 a correct
implementation?

» Aslong as we provide [5, -5] as arguments, itis correct
» TDD advocates this kind of program building

» QuickCheck tries to alleviate this problem

HOW CAN WE SHARE
KNOWLEDGE BETWEEN
PROGRAMMERS?

“THE CODE SPEAKS
FOR ITSELF

WE ARE NOT
ADVERSARIES

IMAGINE IF EVERY TIME WE
TRIED TO READ A BOOK, WE
HAD TO PLAY CODE BREAKERS?

UNLESS WE WERE
READING
FINNEGANS WAKE. . .

PROGRAMMING AS
THEORY BUILDING

“[...1 APERSON WHO HAS OR POSSESSES
A THEORY IN THIS SENSE KNOWS HOW T0
DO CERTAIN THINGS AND IN ADDITION CAN
SUPPORT THE ACTUAL DOING WITH
EXPLANATIONS, JUSTIFICATIONS, AND
ANSWERS T0 QUERIES, ABOUT THE
ACTIVITY OF CONCERN

“[...] WHAT HAS T0 BE BUILT BY
THE PROGRAMMER IS A THEORY
OF HOW CERTAIN AFFAIRS OF THE
WORLD WILL BE HANDLED BY, OR

SUPPORTED BY, A COMPUTER
PROGRAM"

THIS THEORY IS VERY HARD
10 SHARE, IT WON'T BE
REFLECTED IN
DOCUMENTATION OR THE
PROGRAM TEXT

HOW CAN WE SHARE
THIS THEORY?

[HE
ENCYCLOPEDIA

THE ENCYCLOPEDIA

» There's the Encyclopedia
» And there’s the “encyclopedia”

» All the world’s knowledge vs. my knowledge

“THE COMPETENCE OF THE
DESTINATARY IS NOT NECESSARILY
THAT OF THE SENDER™

ABSENCE OF
DETAILS

WE FILL IN DETAILS FROM
OUR OWN ENCYCLOPEDIA

PARASITICAL
WORLDS

“fictional worlds are parasitical worlds
because, If alternative properties are not
spelled out, we take for granted the
properties holding in the real world™

THE MODEL
READER

MODEL READER

» Not the empirical reader
» Lives in the mind of the author (the empirical one)
» It's built as the author writes the story

» Helps the author decide how much detail to include in the
story

TEXTUAL
COOPERATION

NOTICE

@ Dogs must
be carried

II\ ll ll‘ on escalator
D

DOGS MUST BE CARRIED ON ESCALATOR

» Does it mean that you must carry a dog in the escalator?

» Are you going to be banned from the escalator unless you
find a stray dog to carry?

» "Carried” is to be taken metaphorically and help dogs get
through life?

DOGS MUST BE CARRIED ON ESCALATOR

» How do | know this is not a decoration?

» | need to understand that the sign has been placed there
by some authority

» Conventions: | understand that “escalator” means this
escalator and not some escalator in Paraguay

» “"Must be” means must be now

“Atext s a lazy (or economic) mechanism
that lives on the surplus value of meaning
Introduced by the recipient’

"A TEXT WANTS SOMEONE
T0 HELP IT WORK”

READING IS ESSENTIALLY A WORK
OF COOPERATION BETWEEN THE
AUTHOR AND THE READER

A STRATEGIC GAME
BETWEEN AUTHOR AND
READER

NAPOLEON VS
WELLINGTON

BOURDIEU &
TEXTUAL DEVICES

DEVICES TO HELP PROGRAMMERS

» Type declarations
» Documentation

» Paratexts

PARATEXTS

"THE “"PARATEXT" CONSISTS OF THE WHOLE
SERIES OF MESSAGES THAT ACCOMPANY
AND HELP EXPLAIN A GIVEN TEXT—
MESSAGES SUCH AS ADVERTISEMENTS,
JACKET COPY, TITLE, SUBTITLES,
INTRODUCTION, REVIEWS, AND S0 ON."

Eco quoting Genette

“TO INDICATE WHAT IS AT STAKE, WE CAN
ASK ONE SIMPLE QUESTION AS AN
EXAMPLE: LIMITED TO THE TEXT ALONE AND
WITHOUT A GUIDING SET OF DIRECTIONS,
HOW WOULD WE READ JOYCE'S ULYSSES IF
IT WERE NOT ENTITLED ULYSSES?

Gérard Genette

PARATEXTS IN CODE

» Documentation

» package names

» folder structure

» pragmas (as in Haskell)

» imports (hiding things from the Prelude or overloading it)
» compiler flags

» running mode (test, production, benchmarks)

A PRIVILEGED PLACE OF A PRAGMATICS
AND A STRATEGY, OF AN INFLUENCE ON
THE PUBLIC, AN INFLUENCE THAT -
WHETHER WELL OR POORLY UNDERSTOOD
AND ACHIEVED - IS AT THE SERVICE OF A
BETTER RECEPTION FOR THE TEXT AND A
MORE PERTINENT READING OF IT

Gérard Genette

KEEPING PARATEXTS
RELEVANI

HOW TO KEEP
COMMENTS UP TO DATE?

NOT EVEN CERVANTES
ESCAPED THIS FAIE

IN DON QUIXOTE, THE ORIGINAL
DESCRIPTION FOR CHAPTER X
DOESN'T MATCH THE CONTENTS OF
THE CHAPTER!

CONSIDER THIS
CODE

class User {
String username;
String password;
String role;

User (String username, String password, String role) {
this.username = username,

t11s.password = password;

this.role = role;

oublic String getUsername() {return username;}
oublic String getPassword() {return password;}
oublic String getRole() {return role;}

User user

assertEo
assertEo
assertEo

ua
ua

new User('alice',

'secret', '"admin');

| s(user.getUsername(), 'alice');
 s(user.getPassword(), 'secret');

ua

| s(user.getRole(),

"admin') ;

THE PREVIOUS TEST CAN GIVE US
FEEDBACK ABOUT THE CODE WORKING AS
EXPECTED, BUT WE ARE STILL IN THE DARK
ABOUT WHAT IS THIS CLASS PURPOSE, THAT
S, WHAT CONCEPT OF THE REAL WORLD
THIS CLASS IS TRYING TO REPRESENT.

class User {
String username;
String password;
String role;

User (String username, String password, String role) {
this.username = username,

t11s.password = password;

this.role = role;

oublic String getUsername() {return username;}
oublic String getPassword() {return password;}
oublic String getRole() {return role;}

package database,;

class User {
String username;
String password;
String role;

User (String username, String password, String role) {
this.username = username,

t11s.password = password;

this.role = role;

oublic String getUsername() {return username;}
oublic String getPassword() {return password;}
oublic String getRole() {return role;}

package model;

class User {
String username;
String password;
String role;

User (String username, String password, String role) {
this.username = username,

t11s.password = password;

this.role = role;

oublic String getUsername() {return username;}
oublic String getPassword() {return password;}
oublic String getRole() {return role;}

class Person {
String name;
String age;

User (String name, String age) {
this.name = name;
this.age age;

;

public String getName() {return name;}
public String getAge() {return age;}

// This 1s not a person
class Person {

String name;

String age;

User (String name, String age) {
this.name = name;
this.age age;

;

public String getName() {return name;}
public String getAge() {return age;}

HOW T0 BUILD THE MODEL
READER FOR OUR CODE?

METAPHORS

CHOOSING THE RIGHT
DATA STRUCTURE

CHOOSE THE RIGHT DATA STRUCTURE

CHOOSE THE RIGHT DATA STRUCTURE

» Array

CHOOSE THE RIGHT DATA STRUCTURE

» Array

» Set

CHOOSE THE RIGHT DATA STRUCTURE

» Array
» Set

» LinkedList

CHOOSE THE RIGHT DATA STRUCTURE

» Array
» Set

» LinkedList

» Queue

CHOOSE THE RIGHT DATA STRUCTURE

» Array

» Set

» LinkedList
» Queue

» Stack

A PROGRAM'S EXPLANATORY
POWER IS THE MEASURE OF
ITS OWN ELEGANCE

DATA STRUCTURES
HAVE EXPLANATORY
POWER

COGNITIVE LEAPS

CLEAN CODE

CLEAN CODE?

CLEAN CODE
DOESN'T EXIST

"Hegemonic culture propagates its own

values and norms so that they become

the "common sense values of all and
thus maintain the status quo”

Rrparation has ENaAyge
_ e :IY’.LRCV‘T)(Cs
_ X aadinted it Emarse

ARE YOU
AGAINST
BELKA &
STRELKA?

CLEAN CODE

CLEAN CODE

» Requires a shared encyclopedia

» Shared reading competencies

» Old by definition

MODES OF
INTERPRETATION

“Semantic interpretation is the result of
the process by which the reader, facing a
Linear Text Manifestation, fills it up with a

given meaning.”

“Critical Interpretation is, on the contrary, a
metalinguistic activity which aims at
describing and explaining for which formal
reasons a given text produces a given
response.”

LET'S GEI
CRITICAL

THANK YOU

@old_s

N DIGITAL SIGN IN SIGN UP

ACM LIBRARY)

@ Check out the beta version of the next ACM DL

Lector in Codigo or the role of the reader Tools and Resources

' ¢+ Buy this Articl
Full Text: ‘EIpDF ¥ Get this Article Buy 1his Article

& Recommend the ACM DL
to your organization

Author: Alvaro Videla Durazno, Uruguay @ 2018 Article

Published in:) “ Request Permissions

YQ - Proceeding

- Programming'18 Companion Conference Companion of the 2nd o
P International Conference on Art, Science, and Engineering of + Citation Count:2

v ‘ : - Downloads (cumulative): 23

Programming - Downloads (12 Months): 14 0 Save to Binder

Pages 180-186 - Downloads (6 Weeks): 2

—d Bibliometrics i TOC Service:
24 Email RSS

e b - - —

0 Export Formats:

Nice, France — April 09 - 12, 2018 BibTeX EndNote ACM Ref

ACM New York, NY, USA ©2018
table of contents ISBN: 978-1-4503-5513-1 = _
doi>10.1145/3191697.3214326 Upcoming Conference:

loT '19
Share:

S| f wirci o RN+

AuthorTags w

Metaphors We Compute By

Code is a story that explains how to solve a
particular problem

Alvaro Videla

In their now-classic book Metaphors We Live By,® George Lakoff and Mark
Johnson set out to show the linguistic and philosophical worlds that metaphor
isn't just a matter of poetry and rhetorical flourish. They presented how metaphor
permeates all areas of our lives, and in particular that metaphor dictates how we
understand the world, how we act in it, how we live in it. They showed that our
conceptual system is based on metaphors, too, but since we are not normally
aware of our own conceptual system, they had to study it via a proxy: language.

In the Beginning was the Word

By studying language, Lakoff and Johnson tried to understand how metaphors
work by imposing meaning in our lives. The basic example they present is the
conceptual metaphor "argument is war." We understand the act of arguing with
another person in the same way we understand war. This leads to the following
expressions in our daily language:

e Your claims are indefensible.

e He attacked every weak point in my argument.
e | demolished his argument.

e | never won an argument with him.

These sentences may seem innocuous, but the problem is how we act and feel
based on them. We end up seeing the person we are arguing with as our

ALVARO VIDELA

Programming as translation

Converting the real world into digital abstractions requires distillation. And,

like literary translators, developers must understand their biases.

What does it mean "to translate'? A quick answer could be:
to say the same thing in a different language.

— Umberto Eco

Metaphor is a powerful tool for approaching new problems and finding creative solutions
to them. Let’s use a framing metaphor: What could we learn from looking at

programming as translation?

More specifically, programming translates domain problems —a hardware store
inventory, a public library catalogue, a ticket reservation system —into

computer programs.

Many factors come into play when we adapt a system from the real world into the digital
world. Converting the analog into the digital requires discretization, leaving things out.
What we filter out—or what we focus on —depends on our biases. How do conventional

translators handle issues of bias? What can programmers learn from them?

ALVARO VIDELA

Notes on the synthesis
of labyrinths

Solving problems in software development is not unlike finding your way out of
a maze. Consider how documentation might reflect the twists and turns you

faced along way—not just the end result.

No one realized that the book and the labyrinth were one and the same.

— Jorge Luis Borges

One morning you arrive at the office to find your manager waiting for you with a new
task: She wants you to choose a JavaScript framework for the company. All new projects

will be built using the library of your choice. What a responsibility!

A quick internet search reveals a plethora of frameworks to choose from. You land on a
website that compares their pros and cons. From there, you decide to further explore the

two most popular ones: Let’s call them reaction.js and view.js.

As soon as you dive into reaction.js, you notice that you need to learn its XML markup

language. Soon, your browser has five open tabs just for this framework, and you're

REFERENCES

» Aarseth, Espen J. Cybertext: Perspectives on Ergodic Literature. Johns
Hopkins University Press, 1997.

» Beck, Kent. Test-Driven Development: by Example. Addison-Wesley,
2006.

» Berger, Peter L., and Thomas Luckmann. The Social Construction of
Reality: a Treatise in the Sociology of Knowledge. Penguin, 1991.

» Borges, Jorge Luis, and Andrew Hurley. Collected Fictions. Penguin
Books, 1999.

REFERENCES

» Carlevaro, Abel. Serie Didactica: Para Guitarra. Barry, 1966.

» Eagleton, Terry. Literary Theory: an Introduction. Blackwell Publishing,
2015.

» Eco, Umberto, and Anthony Oldcorn. From the Tree to the Labyrinth:

Historical Studies on the Sign and Interpretation. Harvard University
Press, 2014.

» Eco, Umberto. Lector in Fabula: La Cooperazione Interpretativa Nei
Testi Narrativi. Bompiani, 2016.

REFERENCES

» Eco, Umberto. Six Walks in the Fictional Woods. Harvard Univ. Press,
2004.

» Genette, Gérard. Paratexts: Thresholds of Interpretation. Cambridge
Univ. Press, 2001.

» Gardenfors, Peter. Geometry of Meaning: Semantics Based on
Conceptual Spaces. The MIT Press, 2017.

» Hermans, Felienne, and Marlies Aldewereld. “Programming Is Writing Is
Programming.” Proceedings of the International Conference on the Art,

Science, and Engineering of Programming - Programming '17, 2017,
doi:10.1145/3079368.3079413.

REFERENCES

» Kent, William, and Steve Hoberman. Data and Reality: a Timeless Perspective
on Perceiving and Managing Information in Our Imprecise World. Technics

Publications, 2012.

» Lewis, James, and Martin Fowler. “Microservices.” Martinfowler.com, 25 Mar.
2014, martinfowler.com/articles/microservices.html.

» Moore. “What a Programmer Does.” Datamation, Apr. 1967, pp. 177-178.,
archive.computerhistory.org/resources/text/Knuth_Don_X4100/PDF_index/
k-9-pdf/k-9-u2769-1-Baker-What-Programmer-Does.pdf.

» Naur, Peter. "Programming as Theory Building.” Microprocessing and
Microprogramming, vol. 15, no. 5, 1985, pp. 253-261.,
doi:10.1016/0165-6074(85)90032-8.

REFERENCES

» “Random Numbers.” The Art of Computer Programming, by Donald
Ervin Knuth, vol. 2, Addison-Wesley, 2011.

» Steele, Julie, and Noah P. N. lliinsky. Beautiful Visualization. O'Reilly,
2010.

» Videla, Alvaro. “Metaphors We Compute By.” Communications of the
ACM, vol. 60, no. 10, 2017, pp. 42-45., d0i:10.1145/3106625.

