
Rustling up predictive
sports-betting models on
the BEAM

Hello!
I am Dave Lucia
VP, Engineering at SimpleBet

Running Elixir in production
since 2016

Topics

➔ Sports Betting
➔ Machine Learning on the BEAM
➔ One really big NIF
➔ Organizational design

Where do the odds come from?
Sports Betting Today

United States - PASPA

Terminology

❖ Market - An opportunity to bet, e.g. Yankees - Red Sox moneyline

❖ Bet / Wager - Taking a stance on one side of a market with monetary

stake

❖ Stake - Amount of $$$ placed on a bet

❖ Selections - The options to bet on for a market, e.g. under or over

❖ Odds - Potential $$$ of the bet wins

❖ Sportsbook - Company that accepts bets/wagers

Vegas Line - Set by “some dude” in Vegas

Simulation approach

❖ Monte Carlo simulation
algorithms will simulate the
outcome of the game

❖ Simulation runs for 10-100k
iterations

❖ Count statistics for each
iteration

❖ Statistic / # of iterations is
the probability

Machine Learning approach

❖ Design a model with
“features” and a prediction
function

❖ Train on historical data
❖ Predict using the trained

model parameters
combined with the live data

Sports Betting
Traditional markets

Moneyline - Who will win, team A or team B?

Spread - Will team A beat team B by X points?

Over/Under - Will team A and B score more or less than X total points?

11

10

9

8

7

6

5

The “line”

Moneyline - Odds

Selection Implied Odds Decimal Odds American Odds

Team A 40% 2.5 150

Team B 60% 1.667 -150

Sorry, but the house gotta make $$$

Moneyline - Odds with applied overround

Selection Implied Odds Decimal Odds American Odds

Team A 40% 45% 2.5 2.222 150 122

Team B 60% 65% 1.667 1.538 -150 -186

★ 10% applied overround
★ 9.09% vig

SimpleBet
Turning every moment into a betting
opportunity

“ SimpleBet makes
in-play, discrete
occurrence markets
possible by combining
machine learning and
automation

Moment-based markets

❖ In-play, discrete occurrences
❖ Bet while the game happens
❖ Know the outcome within

minutes or seconds of
placing the bet

Baseball
Plate Appearance Exact
What will be the outcome of
this plate appearance?

Baseball
Pitch Count
How many pitches will be in
this plate appearance?

Baseball
Pitch Result
What will be the result of the
next pitch?

American Football
Next Drive
What will be the result of the
next drive?

❖ Sell our odds as a service to
enable in-play markets

❖ B2B customers can use our
odds to offer in-play markets
on their Sportsbooks

What does SimpleBet do?

Machine Learning on the
BEAM
A cautionary tale

Data Flow

Live Data

Historical Data

Coordinate Model Predict Output Probability
Distribution

In-Play Odds Feed - Engineering Problems

➔ Coordinating data ingestion from multiple
sources

➔ Data issues in one match should not affect
another

➔ Predictions must be fast enough to ensure
viability of the market

Team Structure

Data Science
Research

Machine
Learning

Engineering

Platform

Team Structure

Data Science
Research

➔ Math and statistics
background

➔ Focused on modeling and
feature engineering

➔ Some experience in
software engineering

Team Structure

Machine
Learning

Engineering

➔ Low-level systems
programmers

➔ Minimal to no ML
experience

➔ Excited about Rust!

Team Structure

Platform

➔ Java, Scala, Node and Elixir
backgrounds

➔ Experience with
actor-based systems like
Akka

➔ Responsible for
coordinating the lifecycle
of markets

“ Why use Elixir for
building an odds feed?

Data Flow - NIF

Live Data

Historical Data

Coordinate Model Predict Output Probability
Distribution

Deploy Rust as a NIF

The Dream Stack
An Elixir and Rust love story

“ What is a NIF?

“ It is a simpler and more efficient way
of calling C-code than using port
drivers. NIFs are most suitable for
synchronous functions...that do
some relatively short calculations
without side effects and return the
result.

- Erlang documentation

Use NIFs when...

Native
➔ Enacl - Libsodium bindings (crypto)

➔ Floki - HTML5 parser using the html5ever

Rust NIF from Servo

➔ Sass.ex - Sass compiler

Speed
➔ sorted_set - Sorted Set Data structure

➔ nifsy - Faster File System Access

➔ no-way-jose - JWT Signing

https://github.com/jlouis/enacl
https://github.com/philss/floki
https://github.com/philss/floki
https://github.com/danielfarrell/sass.ex
https://github.com/discordapp/sorted_set_nif
https://github.com/ericentin/nifsy
https://github.com/scrogson/no-way-jose

Writing NIFs in C

Erlang

C

NIFs are compiled as .so files (Shared Objects)

gcc -o complex6_nif.so -fpic -shared complex.c
complex6_nif.c

Don’t let it crash!!!!

Rustler

Rustler Features

Safety
The code you write in a Rust NIF should never
be able to crash the BEAM

Interop
Decoding and encoding Rust values into
Erlang terms is as easy as a function call

Type Composition
Making a Rust struct encodable and
decodable to Erlang or Elixir can be done
with a single attribute

Resource Objects
 Enables you to safely pass a reference to a
Rust struct into Erlang code. The struct will
be automatically dropped when it's no longer
referenced

“ Let’s build a “model” in
Elixir and Rust!

https://github.com/davydog187/baseball

https://github.com/davydog187/baseball

Rustler

defmodule Baseball do

 @moduledoc """

 Machine Learning on the BEAM

 """

 use Rustler, otp_app: :baseball, crate: "baseball"

 def prepare(_nums), do: :erlang.nif_error(:nif_not_loaded)

 def update(_ref, _incident), do: :erlang.nif_error(:nif_not_loaded)

 def get_scores(_ref), do: :erlang.nif_error(:nif_not_loaded)

 def predict(_ref, _multiplier), do: :erlang.nif_error(:nif_not_loaded)

end

API - Parts

➔ prepare - Scores static data in the NIF for later reference

➔ update - Updates the state of the game e.g. home_score,
away_score

➔ get_scores - Get the current score

➔ predict - Run the model!

Rustler

defmodule BaseballTest do

 use ExUnit.Case

 test "test" do

 nums = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

 assert {:ok, ref} = Baseball.prepare(nums)

 assert is_reference(ref)

 assert :ok = Baseball.update(ref, :home_score)

 assert :ok = Baseball.update(ref, :away_score)

 assert :ok = Baseball.update(ref, :home_score)

 assert :ok = Baseball.update(ref, :home_score)

 assert {:ok, 3, 1} = Baseball.get_scores(ref)

 assert {:ok, 0.118} = Baseball.predict(ref, 2.0)

 end

end

Rustler - Function Exporting

pub fn on_load<'a>(env: Env, _load_info: Term<'a>) -> bool {

 rustler::resource_struct_init!(GameState, env);

 true

}

rustler::rustler_export_nifs! {

 "Elixir.Baseball",

 [

 ("prepare", 1, prepare),

 ("update", 2, update),

 ("get_scores", 1, get_scores),

 ("predict", 2, predict)

],

 Some(on_load)
}

Rustler - Initialization

fn prepare<'a>(env: Env<'a>, args: &[Term<'a>]) -> Result<Term<'a>, Error> {

 let data: Vec<f64> = args[0].decode()?;

 let state = GameState {

 home_score: RwLock::new(0.0),

 away_score: RwLock::new(0.0),

 model_data: data

 };

 let resource = ResourceArc::new(state);

 Ok((ok(), resource).encode(env))
}

Rustler - Updating and Getting State

fn update<'a>(env: Env<'a>, args: &[Term<'a>]) -> Result<Term<'a>, Error> {

 let state: ResourceArc<GameState> = args[0].decode()?;

 let incident: Incident = args[1].decode()?;

 state.update(incident);

 Ok((ok()).encode(env))

}

fn get_scores<'a>(env: Env<'a>, args: &[Term<'a>]) -> Result<Term<'a>, Error> {

 let state: ResourceArc<GameState> = args[0].decode()?;

 Ok((ok(), state.home_score() as i64, state.away_score() as i64).encode(env))

}

Rustler - Updating Game State

impl GameState {

 pub fn update(&self, incident: Incident) {

 use Incident::*;

 match incident {

 HomeScore => {

 let mut score = self.home_score.write().unwrap();

 *score += 1.0;

 },

 AwayScore => {

 let mut score = self.away_score.write().unwrap();

 *score += 1.0;

 }

 };

 }
}

Rustler - Predict

fn predict<'a>(env: Env<'a>, args: &[Term<'a>]) -> Result<Term<'a>, Error> {

 let state: ResourceArc<GameState> = args[0].decode()?;

 let multiplier: f64 = args[1].decode()?;

 let sum: f64 = state.model_data.iter().sum();

 let result = (sum + state.home_score() + state.away_score()) * multiplier / 1000.0;

 Ok((ok(), result).encode(env))
}

Rustler

defmodule BaseballTest do

 use ExUnit.Case

 test "test" do

 nums = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

 assert {:ok, ref} = Baseball.prepare(nums)

 assert is_reference(ref)

 assert :ok = Baseball.update(ref, :home_score)

 assert :ok = Baseball.update(ref, :away_score)

 assert :ok = Baseball.update(ref, :home_score)

 assert :ok = Baseball.update(ref, :home_score)

 assert {:ok, 3, 1} = Baseball.get_scores(ref)

 assert {:ok, 0.118} = Baseball.predict(ref, 2.0)

 end

end

SimpleAI - Rust-based Machine Learning Framework

SimpleAI Components

➔ core_ai - ML Framework
➔ simple_math - ML Algorithms and data

structures
➔ simple_ai - NIF wrapper
➔ baseball - Baseball-specific model

implementations for sports betting markets

Model Implementation Process

1. Model Research and feature development
2. Model is documented in Markdown in SimpleAI
3. Machine Learning Engineer implements the

features into the model
4. SimpleAI is tagged for release, updated in

consuming codebase

Rust NIF Approach - Challenges

➔ Model execution time
➔ Transferring data between Elixir and Rust
➔ Encoding and decoding external Rust structs
➔ Argument Error!

SimpleAI success!

Going too fast
Building a ferrari when all you needed was
a go-kart

Survivorship Bias

➔ Just because it worked, doesn’t mean it was
right.

➔ Always challenge your assumptions

Team Structure

Data Science
Research

Machine
Learning

Engineering

Platform

“ An organization who designs
a system will produce a
design whose structure is a
copy of the organization’s
communication structure

- Conway’s Law

Inverse Conway Maneuver

Data Science
Research

PlatformMachine
Learning

Engineering

Inverse Conway Maneuver

PlatformMachine
Learning

Engineering

“ What if we were
successful, despite the
obstacles we created?

Data Flow - Service-oriented models

Live Data

Historical Data

Coordinate Model Predict Output Probability
Distribution

Rustling up predictive
sports-betting models on
the BEAM

Books

Other Resources

➔ What happens with you hire a Data Scientist without a Data Engineer

➔ The rise of the term MLOps

➔ What is the most effective way to structure a data science team

➔ Thoughtworks: Inverse Conway Maneuver

https://www.jesse-anderson.com/2017/03/what-happens-when-you-hire-a-data-scientist-without-a-data-engineer/
https://towardsdatascience.com/the-rise-of-the-term-mlops-3b14d5bd1bdb
https://www.notion.so/davelucia/What-is-the-most-effective-way-to-structure-a-data-science-team-162cf1b83d21420c87557b0c0b22b08c
https://www.thoughtworks.com/radar/techniques/inverse-conway-maneuver

