
Testing in an Elixir world

rafaelrochasilva@gmail.com

@RocRafael

#CodeBEAMSTO

Rafael Rocha

4 Senior Software Engineer at
The RealReal

4 Former Consultant at
Plataformatec

4 Former Engineer at LG
Electronics

4 Master degree in Electrical
Engineering

#CodeBEAMSTO

Agenda

- Specifications and software development
- Why testing?
- Base test concepts
 - Types of test
 - Test Pyramid
 - Test Clarity
- Use Case with **Elixir**
 - Outside-in approach
 - Refactoring code with tests
 - Test double with fake clients
 - Doctests

#CodeBEAMSTO

When we start a user story, read the
description, the acceptance criteria,

and start coding

#CodeBEAMSTO

However...

Are you bringing the
specifications into code?

#CodeBEAMSTO

Are you confident about your
deliverables?

#CodeBEAMSTO

Why testing?

[x] Being self-confident

#CodeBEAMSTO

Why testing?

[x] Being self-confident
[x] Organizing thoughts

#CodeBEAMSTO

Why testing?

[x] Being self-confident
[x] Organizing thoughts
[x] Keeping the costs low

#CodeBEAMSTO

Why testing?

[x] Being self-confident
[x] Organizing thoughts
[x] Keeping the costs low
[x] Bringing quality to the code

#CodeBEAMSTO

What are the types of
tests?

#CodeBEAMSTO

Acceptance:

4 Express a usage scenario.

4 End to end

4 Close to the UI

4 Slow

4 Guarantee External Quality

#CodeBEAMSTO

Integration:

4 Test between acceptance and
unit

4 Test the behavior of 2 or more
entities

#CodeBEAMSTO

Unit:

4 Tests the behavior of one
entity

4 Earlier detect mistakes

4 Run Faster

4 Guarantee internal quality

4 Easier to fix mistakes

#CodeBEAMSTO

Test pyramid

#CodeBEAMSTO

Imagine that we have an app called
Greenbox

#CodeBEAMSTO

Greenbox
Online store that sells
 organic beauty products,
 where users can choose a different variety of
 products and build its own box.

4 We have a stock that changes its prices every

10 minutes, due to our crazy promotions.

#CodeBEAMSTO

Let's practice?

As a User, I want to fetch products from
abcdpricing.com so that we can store the current name
and price of a given product.

#CodeBEAMSTO

Acceptance Criteria:

4 All id, products name and price should be fetched
time to time.

4 The product name should be capitalized

4 The price should be in a dollar format, like: $12.50

#CodeBEAMSTO

Basically what we have to do:

1) Fetch Products from the API
2) Build a structure with id, capitalized name, and price
3) Build an interface to consume the data

#CodeBEAMSTO

Let's use an Outside-in
approach

#CodeBEAMSTO

What is the primary outside layer of our
tasks?

[] Fetch Products from the API
[] Build a structure with id, capitalized name, and price
[] Build an interface to consume the data

#CodeBEAMSTO

What is the primary outside layer of our
tasks?

[] Fetch Products from the API
[] Build a structure with id, capitalized name, and price
[1] Build an interface to consume the data

#CodeBEAMSTO

To fetch the products time to time, we
are going to use a GenServer

#CodeBEAMSTO

What is a GenServer?

"A GenServer is a process like any other process in
Elixir, and it can be used to keep state, execute code
asynchronously and so on."
-- Elixir Documentation

#CodeBEAMSTO

[1] Consume the data

defmodule GreenBox.PriceUpdater do
 use GenServer

 def start_link do
 GenServer.start_link(__MODULE__, [])
 end

 def init(state) do
 {:ok, state}
 end

#CodeBEAMSTO

[1] Consume the data

def list_products(pid) do
 GenServer.call(pid, :list_products)
end

def handle_call(:list_products, _, state) do
 {:reply, state, state}
end

#CodeBEAMSTO

What is the primary outside layer of our
tasks?

[2] Fetch Products from the API
[] Build a structure with id, capitalized name, and price
[1] Build an interface to consume the data

#CodeBEAMSTO

[2] Fetch Products from the API

defmodule GreenBox.PriceUpdater do
 use GenServer

 def start_link do
 GenServer.start_link(__MODULE__, [])
 end

 def init(_) do
 state = fetch_products()
 schedule_work()
 {:ok, state}
 end

#CodeBEAMSTO

[2] Fetch Products from the API

@doc """
Run the job and reschedule it to run again after some time.
"""
def handle_info(:get_products, _state) do
 products = fetch_products()
 schedule_work()

 {:noreply, products}
end

defp fetch_products do
 response = HTTPoison.get!("http://abcdpricing.com/products")
 Poison.decode!(response.body)
end

@time_to_consume 10000 * 60 # 10 minutes
defp schedule_work do
 Process.send_after(self(), :get_products, @time_to_consume)
end

#CodeBEAMSTO

What is the primary outside layer of our
tasks?

[2] Fetch Products from the API
[3] Build a structure with id, capitalized name and
price
[1] Build an interface to consume the data

#CodeBEAMSTO

[3] Build a structure with id, capitalized name and price

def init(_) do
 state = build_products()
 schedule_work()
 {:ok, state}
end

defp build_products do
 fetch_products()
 |> process_products()
end

#CodeBEAMSTO

[3] Build a structure with id, capitalized name and price

defp fetch_products do
 response = HTTPoison.get!("http://abcdpricing.com/products")
 Poison.decode!(response.body)
end

defp process_products(products) do
 Enum.map(products, fn %{id: id, name: name, price: price} ->
 new_name = String.capitalize(name)
 new_price = "$#{price/100}"
 %{
 id: id,
 name: new_name,
 price: new_price
 }
 end)
end

#CodeBEAMSTO

How can I test a
GenServer?

#CodeBEAMSTO

Be careful to not test your servers
through the callbacks

 otherwise you are going to test the
GenServer implementation.

#CodeBEAMSTO

Change your Design!

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

Let's build an integration test to guide
the development

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

Let's build an INTEGRATION TEST

defmodule Greenbox.ProductFetcherTest do
 use ExUnit.Case, async: true
 alias Greenbox.ProductFetcher

 # Specifications into code
 describe "Given a request to fetch a list of products" do
 test "builds a list of products with id, capitalized name and price in dollar" do
 products = ProductFetcher.build()

 assert [
 %{id: "1234", name: "Blue ocean cream", price: _},
 %{id: "1235", name: "Sea soap", price: _}
] = products
 end

#CodeBEAMSTO

Let tests guide the development

test "builds a product with the price with a dollar sign" do
 product =
 ProductFetcher.build()
 |> List.first()

 # Expected format "$12.45"
 assert Regex.match?(~r(\$\d+\.\d+), product.price)
end

#CodeBEAMSTO

Product Fetcher - A new entity
defmodule Greenbox.ProductFetcher do
 def build do
 fetch_products()
 |> process_products()
 end

 defp fetch_products do
 response = HTTPoison.get!("http://abcdpricing.com/products")
 Poison.decode!(response.body)
 end

 defp process_products(products) do
 Enum.map(products, fn %{id: id, name: name, price: price} ->
 %{
 id: id,
 name: capitalize_name(name),
 price: price_to_money(price)
 }
 end)
 end

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

Product Fetcher, is building a Product Structure...

defp process_products(products) do
 Enum.map(products, fn %{id: id, name: name, price: price} ->
 %{
 id: id,
 name: capitalize_name(name),
 price: price_to_money(price)
 }
 end)
end

#CodeBEAMSTO

Listen to your code

defp price_to_money(price) do
 "$#{price / 100}"
end

defp capitalize_name(name) do
 String.capitalize(name)
end

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

Build the unit tests to handle product structure
defmodule Greenbox.ProductTest do
 use ExUnit.Case, async: true
 alias Greenbox.Product

 describe "Given a product" do
 test "transforms its name by capitalizing it" do
 # Setup
 product_name = "BLUE SOAP"

 # Exercise
 capitalized_name = Product.capitalize_name(product_name)

 # Verify
 assert capitalized_name == "Blue soap"
 end

#CodeBEAMSTO

Build the unit tests to handle product structure

 test "transforms the price in cents to dollar" do
 # Setup
 product_price_in_cents = 1253

 # Exercise
 product_price = Product.price_to_money(product_price_in_cents)

 # Verify
 assert product_price == "$12.53"
 end
 end
end

#CodeBEAMSTO

Product Entity

defmodule Greenbox.Product do
 defstruct [:id, :name, :price]

 def price_to_money(price) do
 "$#{price / 100}"
 end

 def capitalize_name(name) do
 String.capitalize(name)
 end
end

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

And finally, build a client to call the external API

defmodule Greenbox.ProductClient do
 def fetch_products do
 response = url() |> HTTPoison.get!()
 Poison.decode!(response.body)
 end

 defp url do
 Application.get_env(:greenbox, :abc_products_url)
 end
end

#CodeBEAMSTO

Fetch Products Architecture

#CodeBEAMSTO

Did you notice that we are hitting the
API every time we run our tests?

#CodeBEAMSTO

Call to the external API

defmodule Greenbox.ProductClient do
 def fetch_products do
 response = url() |> HTTPoison.get!()
 Poison.decode!(response.body)
 end

 defp url do
 Application.get_env(:greenbox, :abc_products_url)
 end
end

#CodeBEAMSTO

Test Double, how to stub in
Elixir?

#CodeBEAMSTO

Test Double
SUT: System Under Test
DOC: Collaborator
Double: Is the object that substitutes the real DOC

#CodeBEAMSTO

Let's start creating our
Double

#CodeBEAMSTO

Fake client
test/support/fake_client.ex
defmodule Greenbox.FakeClient do

 def fetch_products do
 [
 %{id: "1234", name: "BLUE OCEAN CREAM", price: Enum.random(8000..10000)},
 %{id: "1235", name: "SEA SOAP", price: Enum.random(5000..60000)}
]
 end
end

#CodeBEAMSTO

Configure the Fake Client
defmodule Greenbox.MixProject do
 use Mix.Project

 def project do
 [
 app: :greenbox,
 version: "0.1.0",
 elixir: "~> 1.7",
 elixirc_paths: elixirc_paths(Mix.env()),
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 # Specifies which paths to compile per environment.
 defp elixirc_paths(:test), do: ["lib", "test/support"]
 defp elixirc_paths(_), do: ["lib"]
end

#CodeBEAMSTO

config/config.exs
config :greenbox,
 abc_products_client: Greenbox.ProductClient

#CodeBEAMSTO

config/test.exs

config :greenbox,
 abc_products_client: Greenbox.FakeClient

#CodeBEAMSTO

Other ways to stub requests in Elixir

4 Bypass (https://github.com/PSPDFKit-labs/bypass)

4 Mox (https://github.com/plataformatec/mox)

#CodeBEAMSTO

What about Doctest?

Are they supposed to substitute tests?

#CodeBEAMSTO

Doctest

defmodule Greenbox.Product do
 defstruct [:id, :name, :price]

 @doc """
 Converts price in cents to a string money format.

 ## Example:
 iex> Greenbox.Product.price_to_money(1245)
 "$12.45"

 """
 def price_to_money(price) do
 "$#{price / 100}"
 end

#CodeBEAMSTO

How tests can reflect specifications and
help us to build confident code?

#CodeBEAMSTO

4 Write clear test descriptions

4 Follow the specifications

4 Think outside-in

4 Think in the Test Pyramid

4 Use stubs or build fake clients

4 Don't test callbacks

4 Abstract your code into modules

#CodeBEAMSTO

Thank you!
https://github.com/rafaelrochasilva/greenbox

https://github.com/rafaelrochasilva/
testinginelixir_talk

http://blog.plataformatec.com.br/2018/11/starting-
with-elixir-the-study-guide/

#CodeBEAMSTO

References:

https://github.com/plataformatec/mox
https://github.com/PSPDFKit-labs/bypass
https://github.com/keathley/wallaby

#CodeBEAMSTO

