Ra

a Raft implementation

e Past:
o .NET (C#/F#),
o Distsys

Ka rI N i ISSO n o Implemented Raft in F#

e Author of fez

. o F# to core erlang compiler
Son of nil o https://qithub.com/kjnilsson/fez

e . @kjnilsson

https://github.com/kjnilsson/fez

[P1votal

BRabbitVO

Pivotal and
RabbitMQ

Invested in the rabbit

Sponsors RabbitMQ
development

Provides RabbitMQ services as
part the Cloud Foundry

platform.
o RabbitMQ “tile”

Provides commercial support
for RabbitMQ

Ra
Raft
RabbitMQ

gen_servers

e Are: e Are not:
o Easy to reason about o Not replicated
(linear) o Not fault tolerant
o Simple concurrency model o Not persistent
o Stateful

o Simple API (cast, call)

Ra (Raft) allows us to
Implement persistent,
replicated state
machines.

A state machine

apply: Command -> State -> State

Raft

In two minutes

Log replication

o Leader -> follower

o Persisted to reliable storage
(fsync)

o Quorum (n/2+1)

o Ordered, each log entry is
assigned a monotonically
incrementing index

Leader election
o Safe, based log state
o Term (epoch) for the time a server
is leader for
m Monotonically incrementing
integer

Commitindex: O
State =]

1 PUTK1,V

Commitindex: 1
State = [{K1, V}]

1 PUTK1,V

1 PUTK1,V

Raft Resources

e The website:
o https://raft.qithub.io/

e The mailing list:
o https://groups.google.com/forum/#!forum/raft-dev

e The paper:
o https://raft.qithub.io/raft.pdf
e The thesis:

o https://ramcloud.stanford.edu/~ongaro/thesis.pdf

https://raft.github.io/
https://groups.google.com/forum/#!forum/raft-dev
https://raft.github.io/raft.pdf
https://ramcloud.stanford.edu/~ongaro/thesis.pdf

Using Ra (to make a kv-store)

1. Implement the ra_machine behaviour (2 required callbacks)

a. init/1
i. Create the initial state of the state machine
b. apply/4

i. Apply a command to the state machine and return the new state
ii. Must be deterministic
iii. No side effects inside apply/4! (!, exceptions, ets/dets operations)
c. “Client” api (put, delete, get)
2. Start a cluster of Ra servers
a. ra:start _cluster/3
b. Ra servers are always named and referred to by their {Name, Node}.
3. Send commands and interact

a. ra:process_command/2
b. Observe!

Demo! (&)

Ra provides

e Replication
o Data safety
o Primary / replica (leader / follower)
o Fault tolerance (follower can crash without affecting availability, to a point)
e Persistence
o Recover state machine state
e Leader election
o High availability
e Dynamic member changes

e Raftas a library
o Simple (ish) API

Async API (the not so simple API)

e ra:pipeline_command/2|3|4

e How to ensure messages aren'’t lost
o ra:pipeline_command/3
m ra:pipeline_command(Serverld, Command, Correlation)
o Correlation
o Correlation returned as:
m {ra_event, Leaderld, {applied, [{Correlation, Reply}]}}
m {ra_event, Serverld, {rejected, {not_leader, Leaderld, Correlation}}}
e Maintaining ordering
Use process scoped monotonically incrementing integers as correlations ids
Resend when detecting a gap in the correlations returned by the applied event

Implement a re-sequencer in the state machine
Future: first class sessions in ra?

o O O O

Making stuff happen in the real world

Raft state machines are pure functions (no side effects)
Deterministic

Replaying the log should result in exactly the same end state
Effects system models side effects as data.

Only actioned on the leader

Ra Machine “Effects”

e {send _msg, pid(), Msg}
o Sends Msg to the pid
o NB: uses “erlang:send(Pid, Msg, [noconnect, nosuspend])’
e {mod_call, module(), function(), [term()]}
o Calls an arbitrary function
o NB: should not block or throw!
e {monitor, process | node, node() | pid()}
o Ra monitors a process or node on behalf of the state machine

o Adds a command to the log:
m {down, pid(), Reason} | {nodeup | nodedown, node()}

e {demonitor, process | node, node() | pid()}

e {release cursor, Raftindex, SnapshotState}
o Allows a state machine to provide a potential snapshot point to ra

Design

Why write our own?

e We wanted to see if it was possible to write an efficient, safe queue

implementation
o Control
o Experimentation

e Design needed to meet RabbitMQ requirements
Many thousands of Ra clusters inside an erlang cluster
Distributed erlang

Lightweight

Minimal number of processes

Pure erlang

o O O O O

How did we end up where we are today?

e Initial we wanted it to be an OTP library
o Embeddable in existing supervision trees.
o No dependencies
e |[nitial design
o Every ra server had their own log that they wrote to
m Remember fsync
e The initial design provided good throughput

o But did not scale for multiple processes
o Fell over after only a dozen or so
o fsync contention

Centralization

e Access to critical resources needed to be controlled and shared fairly across

all the Ra servers running within an erlang cluster
o Reduce disk contention
o Dropped OTP library requirement

Log infrastructure

e Write Ahead Log (WAL)

All ra servers send async writes to the WAL

WAL flushes to disk in batches (gen_batch_server) and responds to writers after fsync
All reads happens from ETS “mem tables”

Inspired by LSM Trees (leveldb etc)

e Segment Writer
o Writes mem tables to per ra-server disk storage
o No compaction
m Instead just delete full segments
m We can do this
e Snapshot Writer

o Writes snapshots of ra machine state

O O O O

Fault detection

e Vanilla Raft uses the replication message as heartbeat

Not feasible for thousands of Ra clusters (too chatty)
Ra:

(@)

Erlang monitors (followers monitor leaders and trigger election timers
m nodedowns, process crashes
o aten: node failure detector

m https://github.com/rabbitmg/aten
|

Provides timely hints of erlang nodes being slow / unavailable / partitioned

If the nodes is the node the leader is running on the follower may start a pre_vote
election.

https://github.com/rabbitmq/aten

Testing

Jepsen

e ra-kv-store

o key-value state machine implementation running a similar jepsen test suite to etcd
https://github.com/rabbitmg/ra-kv-store

Found bugs

o Now passes

e Standard jepsen tests from original RabbitMQ test
o https://github.com/rabbitmqg/jepsen
o Found bugs
o Now passes

e Gives us confidence we've squashed the most obvious bugs at least!

(@)

(@)

https://github.com/rabbitmq/ra-kv-store
https://github.com/rabbitmq/jepsen

Inside RabbitMQ

e Also tested indirectly through RabbitMQ

e Maturing consensus implementations is hard
o Time
o Testing
o Application

e Battle testing inside a widely used open source message broker

o Prteolda®@

Other uses

e Mnevis
o An experimental replication / transaction layer for mnesia
o https://qithub.com/rabbitmg/mnevis
o Implements the mnesia activity API
o Breaks some of the rules for state machine implementation
m We’re working on verifying soundness of this approach

https://github.com/rabbitmq/mnevis

Ra status

e Current version: v0.9.0
o API settled

@)

Major changes are unlikely before 1.0

e Semantic versioning applied to:

o O O

(@)

ra module
ra_machine behaviour
On-disk data formats
Post 1.0

e https://qithub.com/rabbitmag/ra

https://github.com/rabbitmq/ra

Ra future

e Multiple WALs
o Configured to use multiple disk volumes
e Disk-based and mutable state machines
o Like Mnevis
o ETS based state machines?
e First class sessions
o Easier linearizability
e Optimisation
o Profiling
e More idiomatic elixir API?
o What would it look like?

Thank you!

