
Ra
a Raft implementation

By Team RabbitMQ

Karl Nilsson
Son of nil

● Past:
○ .NET (C# / F#),
○ Distsys
○ Implemented Raft in F#

● Author of fez
○ F# to core erlang compiler
○ https://github.com/kjnilsson/fez

● t: @kjnilsson

https://github.com/kjnilsson/fez

Pivotal and
RabbitMQ
Invested in the rabbit

● Sponsors RabbitMQ
development

● Provides RabbitMQ services as
part the Cloud Foundry
platform.

○ RabbitMQ “tile”

● Provides commercial support
for RabbitMQ

Ra
Raft
RabbitMQ

gen_servers
● Are:

○ Easy to reason about
(linear)

○ Simple concurrency model
○ Stateful
○ Simple API (cast, call)

● Are not:
○ Not replicated
○ Not fault tolerant
○ Not persistent

Ra (Raft) allows us to
implement persistent,
replicated state
machines.

apply: Command -> State -> State

A state machine

Raft
In two minutes

● Log replication
○ Leader -> follower
○ Persisted to reliable storage

(fsync)
○ Quorum (n/2+1)
○ Ordered, each log entry is

assigned a monotonically
incrementing index

● Leader election
○ Safe, based log state
○ Term (epoch) for the time a server

is leader for
■ Monotonically incrementing

integer

Raft protocol: replicate entry

10

FOLLOWER

LEADER

FOLLOWER

PUT K1, V

CommitIndex: 0
State = []

AppendEntriesRpc { Entries = [1, PUT K1, V }

AppendEntriesRpc { Entries = [1, PUT K1, V] }

LOGLOG

1 PUT K1, V’

Raft protocol: reply + commit

11

FOLLOWER

LEADER

FOLLOWER

OK

CommitIndex: 0
State = []
CommitIndex: 1
State = [{K1, V}]

AppendEntriesReply { Success = true }

LOG

1 PUT K1, V’

LOG

1 PUT K1, V’

Raft Resources
● The website:

○ https://raft.github.io/

● The mailing list:
○ https://groups.google.com/forum/#!forum/raft-dev

● The paper:
○ https://raft.github.io/raft.pdf

● The thesis:
○ https://ramcloud.stanford.edu/~ongaro/thesis.pdf

https://raft.github.io/
https://groups.google.com/forum/#!forum/raft-dev
https://raft.github.io/raft.pdf
https://ramcloud.stanford.edu/~ongaro/thesis.pdf

Using Ra (to make a kv-store)
1. Implement the ra_machine behaviour (2 required callbacks)

a. init/1

i. Create the initial state of the state machine
b. apply/4

i. Apply a command to the state machine and return the new state
ii. Must be deterministic
iii. No side effects inside apply/4! (!, exceptions, ets/dets operations)

c. “Client” api (put, delete, get)

2. Start a cluster of Ra servers
a. ra:start_cluster/3

b. Ra servers are always named and referred to by their {Name, Node}.

3. Send commands and interact
a. ra:process_command/2

b. Observe!

Demo! (😨)

Ra provides
● Replication

○ Data safety
○ Primary / replica (leader / follower)
○ Fault tolerance (follower can crash without affecting availability, to a point)

● Persistence
○ Recover state machine state

● Leader election
○ High availability

● Dynamic member changes
● Raft as a library

○ Simple (ish) API

Async API (the not so simple API)
● ra:pipeline_command/2|3|4
● How to ensure messages aren’t lost

○ ra:pipeline_command/3
■ ra:pipeline_command(ServerId, Command, Correlation)

○ Correlation
○ Correlation returned as:

■ {ra_event, LeaderId, {applied, [{Correlation, Reply}]}}
■ {ra_event, ServerId, {rejected, {not_leader, LeaderId, Correlation}}}

● Maintaining ordering
○ Use process scoped monotonically incrementing integers as correlations ids
○ Resend when detecting a gap in the correlations returned by the applied event
○ Implement a re-sequencer in the state machine
○ Future: first class sessions in ra?

Making stuff happen in the real world
● Raft state machines are pure functions (no side effects)
● Deterministic
● Replaying the log should result in exactly the same end state
● Effects system models side effects as data.
● Only actioned on the leader

Ra Machine “Effects”
● {send_msg, pid(), Msg}

○ Sends Msg to the pid
○ NB: uses `erlang:send(Pid, Msg, [noconnect, nosuspend])`

● {mod_call, module(), function(), [term()]}
○ Calls an arbitrary function
○ NB: should not block or throw!

● {monitor, process | node, node() | pid()}
○ Ra monitors a process or node on behalf of the state machine
○ Adds a command to the log:

■ {down, pid(), Reason} | {nodeup | nodedown, node()}

● {demonitor, process | node, node() | pid()}
● {release_cursor, RaftIndex, SnapshotState}

○ Allows a state machine to provide a potential snapshot point to ra

Design

Why write our own?
● We wanted to see if it was possible to write an efficient, safe queue

implementation
○ Control
○ Experimentation

● Design needed to meet RabbitMQ requirements
○ Many thousands of Ra clusters inside an erlang cluster
○ Distributed erlang
○ Lightweight
○ Minimal number of processes
○ Pure erlang

How did we end up where we are today?
● Initial we wanted it to be an OTP library

○ Embeddable in existing supervision trees.
○ No dependencies

● Initial design
○ Every ra server had their own log that they wrote to

■ Remember fsync

● The initial design provided good throughput
○ But did not scale for multiple processes
○ Fell over after only a dozen or so
○ fsync contention

Centralization
● Access to critical resources needed to be controlled and shared fairly across

all the Ra servers running within an erlang cluster
○ Reduce disk contention
○ Dropped OTP library requirement

Log infrastructure
● Write Ahead Log (WAL)

○ All ra servers send async writes to the WAL
○ WAL flushes to disk in batches (gen_batch_server) and responds to writers after fsync
○ All reads happens from ETS “mem tables”
○ Inspired by LSM Trees (leveldb etc)

● Segment Writer
○ Writes mem tables to per ra-server disk storage
○ No compaction

■ Instead just delete full segments
■ We can do this

● Snapshot Writer
○ Writes snapshots of ra machine state

Fault detection
● Vanilla Raft uses the replication message as heartbeat
● Not feasible for thousands of Ra clusters (too chatty)
● Ra:

○ Erlang monitors (followers monitor leaders and trigger election timers
■ nodedowns, process crashes

○ aten: node failure detector
■ https://github.com/rabbitmq/aten
■ Provides timely hints of erlang nodes being slow / unavailable / partitioned
■ If the nodes is the node the leader is running on the follower may start a pre_vote

election.

https://github.com/rabbitmq/aten

Testing

Jepsen
● ra-kv-store

○ key-value state machine implementation running a similar jepsen test suite to etcd
○ https://github.com/rabbitmq/ra-kv-store
○ Found bugs
○ Now passes

● Standard jepsen tests from original RabbitMQ test
○ https://github.com/rabbitmq/jepsen
○ Found bugs
○ Now passes

● Gives us confidence we’ve squashed the most obvious bugs at least!

https://github.com/rabbitmq/ra-kv-store
https://github.com/rabbitmq/jepsen

Inside RabbitMQ
● Also tested indirectly through RabbitMQ
● Maturing consensus implementations is hard

○ Time
○ Testing
○ Application

● Battle testing inside a widely used open source message broker

○ 👌👊💪💗😄🙌👻👽👍💣

Other uses
● Mnevis

○ An experimental replication / transaction layer for mnesia
○ https://github.com/rabbitmq/mnevis
○ Implements the mnesia activity API
○ Breaks some of the rules for state machine implementation

■ We’re working on verifying soundness of this approach

https://github.com/rabbitmq/mnevis

Ra status
● Current version: v0.9.0
● API settled

○ Major changes are unlikely before 1.0

● Semantic versioning applied to:
○ ra module
○ ra_machine behaviour
○ On-disk data formats
○ Post 1.0

● https://github.com/rabbitmq/ra

https://github.com/rabbitmq/ra

Ra future
● Multiple WALs

○ Configured to use multiple disk volumes

● Disk-based and mutable state machines
○ Like Mnevis
○ ETS based state machines?

● First class sessions
○ Easier linearizability

● Optimisation
○ Profiling

● More idiomatic elixir API?
○ What would it look like?

Thank you!

