

# Life of a Distributed Query

Teon Banek

November 9, 2018



## About Me

Teon Banek

- Graduated from University of Zagreb, Faculty of Electrical Engineering and Computing
- Lead query engine developer at Memgraph
- Loves fencing, lasagne and black tea
- teon.banek@memgraph.com



# About Us

Memgraph Ltd.

- Startup, founded in 2016
- Building a graph database
  - In-memory
  - High-performance
  - Distributed
- https://memgraph.com



# Outline



- OpenCypher Query Language
- 3 Semantic Analysis
- 4 Query Planning and Optimization
- 5 Query Execution



• An SQL query walks into a bar and sees two tables. It walks up to them and says "May I join you?"



• An SQL query walks into a bar and sees two tables. It walks up to them and says "May I join you?"

```
SELECT * FROM a, (SELECT * FROM b, c
WHERE b.rel_c = c.rel_b
AND b.id NOT IN (SELECT id FROM d
WHERE ...
)) WHERE ...
```

• Joining tables produces very hard to read queries.



# openCypher





# Parsing

#### • antlr4

- Generates a parser from BNF like grammar description.
- antrl4 AST  $\rightarrow$  our custom AST
  - Allows for future support of other languages.
  - Makes potential antrl4 replacement easier.
- Literal and parameter stripping
  - Queries can be hashed and cached for reuse.



### Semantic Analysis

- Various sanity checks:
  - trying to create the same element multiple times;
  - combining incompatible clauses (e.g. UNION and UNION ALL);
  - trying to use the same key twice to create a map;
  - etc.



## Semantic Analysis

- Various sanity checks:
  - trying to create the same element multiple times;
  - combining incompatible clauses (e.g. UNION and UNION ALL);
  - trying to use the same key twice to create a map;
  - etc.
- Generating symbols for variables.
  - Validating variable scope and bindings.
  - Checking for type mismatches.



- For each variable a symbol is generated.
- Each symbols gets a space for its value on the *frame*.



- For each variable a symbol is generated.
- Each symbols gets a space for its value on the *frame*.
- Frame
  - Data structure (array) for storing values during execution.
  - Similar to a stack frame.
  - No dynamic allocation, so the size can be determined statically.



| Symbol | Value |
|--------|-------|
| a      | null  |



| Symbol | Value |
|--------|-------|
| a      | null  |
| Ъ      | null  |



| Symbol    | Value |
|-----------|-------|
| a         | null  |
| b         | null  |
| anon_edge | null  |



| Symbol    | Value |
|-----------|-------|
| a         | null  |
| b         | null  |
| anon_edge | null  |
| b (AS b)  | null  |



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b
  - ScanAll find all nodes in the graph



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b
  - ScanAll find all nodes in the graph
  - Expand traverse all edges from a node



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b
  - ScanAll find all nodes in the graph
  - Expand traverse all edges from a node
  - Filter apply a filter expression



- Steps of work are described by *logical operators*.
- Similar, but different than operators of relational algebra found in SQL.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b
  - ScanAll find all nodes in the graph
  - Expand traverse all edges from a node
  - Filter apply a filter expression
  - Produce expressions to produce results



- Extracting filters into regular form.
- MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b) WHERE b :Officer RETURN b.name AS b



```
    MATCH (a) -[:FriendOf]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
RETURN b.name AS b
```



```
    MATCH (a) -[:FriendOf]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
RETURN b.name AS b
```



```
    MATCH (a) -[anon_edge]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
AND anon_edge :FriendOf
RETURN b.name AS b
```



```
    MATCH (a) -[anon_edge]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
AND anon_edge :FriendOf
RETURN b.name AS b
```

- Collecting information on symbols used in expressions.
  - We want to apply filters as soon as possible.
  - Potentially replace with index lookup.





#### • We can alter the order of matching and estimate the best one.

• MATCH (a) -[:FriendOf]-> (b)



- MATCH (a) -[:FriendOf]-> (b)
- MATCH (b) <-[:FriendOf]- (a)



- MATCH (a) -[:FriendOf]-> (b)
- MATCH (b) <-[:FriendOf]- (a)
- MATCH (a), (b), (a) -[:FriendOf]-> (b)



- MATCH (a) -[:FriendOf]-> (b)
- MATCH (b) <-[:FriendOf]- (a)
- MATCH (a), (b), (a) -[:FriendOf]-> (b)
- MATCH (a), (b), (b) <-[:FriendOf]- (a)



• ScanAll for a





- ScanAll for a
- Filter based on a





- ScanAll for a
- Filter based on a
- Can we replace ScanAll + Filter with index?





- ScanAll for a
- Filter based on a
- Can we replace ScanAll + Filter with index?
  - Filter suitable for indexed lookup?
  - Index exists?




#### MATCH (a)-[:FriendOf]->(b)

- ScanAll for a
- Filter based on a
- Can we replace ScanAll + Filter with index?
  - Filter suitable for indexed lookup?
  - Index exists?
- Expand from a to b





#### MATCH (a)-[:FriendOf]->(b)

- ScanAll for a
- Filter based on a
- Can we replace ScanAll + Filter with index?
  - Filter suitable for indexed lookup?
  - Index exists?
- Expand from a to b
- Filter based on a and b







• ScanAll for a





- ScanAll for a
- Filter based on a, potentially index



- ScanAll for a
- Filter based on a, potentially index
- Same as above for finding b





- ScanAll for a
- Filter based on a, potentially index
- Same as above for finding b
- Expand from a to b
  - Immediately produces edges connected from a to b





#### **Plan Cost Estimation**

- Estimate the cost of each operator and the total cost, based on:
  - cardinality increase/reduction
  - execution cost



#### **Plan Cost Estimation**

- Estimate the cost of each operator and the total cost, based on:
  - cardinality increase/reduction
  - execution cost
- Two sub-plans for matching:
  - $(1) ScanAll(indexed) \rightarrow Expand \rightarrow Filter$
  - $\bigcirc$  ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand



## **Plan Cost Estimation**

- Estimate the cost of each operator and the total cost, based on:
  - cardinality increase/reduction
  - execution cost
- Two sub-plans for matching:
  - (1) ScanAll(indexed)  $\rightarrow$  Expand  $\rightarrow$  Filter
  - $\bigcirc$  ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand
- Scanned vertices degrees vs indexed lookup
  - If degree is low, 1st plan has lower cost.
  - Otherwise, the 2nd plan will be better.



- Worker machines store a sub-graph.
- Each worker can produce a subset of results.



- Worker machines store a sub-graph.
- Each worker can produce a subset of results.
- ScanAll(indexed)  $\rightarrow$  Expand  $\rightarrow$  Filter
  - Final results are merged on master machine.
  - Expand may need to communicate with other workers.



- Worker machines store a sub-graph.
- Each worker can produce a subset of results.
- ScanAll(indexed)  $\rightarrow$  Expand  $\rightarrow$  Filter
  - Final results are merged on master machine.
  - Expand may need to communicate with other workers.
- ScanAll(indexed)  $\rightarrow$  ScanAll(indexed)  $\rightarrow$  Cartesian  $\rightarrow$  Expand
  - Master needs to get the Cartesian of ScanAll to execute Expand.
  - May cause potentially high memory consumption or workload.
  - No need for communication between worker machines.



- Worker machines store a sub-graph.
- Each worker can produce a subset of results.
- ScanAll(indexed)  $\rightarrow$  Expand  $\rightarrow$  Filter
  - Final results are merged on master machine.
  - Expand may need to communicate with other workers.
- ScanAll(indexed)  $\rightarrow$  ScanAll(indexed)  $\rightarrow$  Cartesian  $\rightarrow$  Expand
  - Master needs to get the Cartesian of ScanAll to execute Expand.
  - May cause potentially high memory consumption or workload.
  - No need for communication between worker machines.
- Cost estimator will need to estimate communication overhead.



## Final Plan





# Final Plan





# Final Plan



#### But how do we execute it?



# Pull Mechanism

- Iterative approach
  - Each operator produces a Cursor (iterator).
  - Calling Pull on top of the plan cursor produces a single result.



# Pull Mechanism

- Iterative approach
  - Each operator produces a Cursor (iterator).
  - Calling Pull on top of the plan cursor produces a single result.
- Lazy evaluation saves memory.
- Limiting or skipping results is natural.



# Pull Mechanism

- Iterative approach
  - Each operator produces a Cursor (iterator).
  - Calling Pull on top of the plan cursor produces a single result.
- Lazy evaluation saves memory.
- Limiting or skipping results is natural.
- But some operations don't play nice:
  - ordering results and
  - CRUD operations.

















| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Spock       |
| anon_edge | Kirk, Spock |
| b (AS b)  | null        |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Spock       |
| anon_edge | Kirk, Spock |
| b (AS b)  | null        |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Spock       |
| anon_edge | Kirk, Spock |
| b (AS b)  | "Spock"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | МсСоу       |
| anon_edge | Kirk, McCoy |
| b (AS b)  | "Spock"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| Ъ         | МсСоу       |
| anon_edge | Kirk, McCoy |
| b (AS b)  | "Spock"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Uhura       |
| anon_edge | Kirk, Uhura |
| b (AS b)  | "Spock"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Uhura       |
| anon_edge | Kirk, Uhura |
| b (AS b)  | "Spock"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Uhura       |
| anon_edge | Kirk, Uhura |
| b (AS b)  | "Uhura"     |





| Symbol    | Value       |
|-----------|-------------|
| a         | Kirk        |
| b         | Uhura       |
| anon_edge | Kirk, Uhura |
| b (AS b)  | "Uhura"     |







М

A

s

Ť

ER

W

R

KE

R







| Symbol | Value |
|--------|-------|
| а      | null  |






































### The End

• Thank you for your attention!



# The End

- Thank you for your attention!
- Do you have any questions?



# The End

- Thank you for your attention!
- Do you have any questions?
- We are hiring: careers@memgraph.com

