Life of a Distributed Query

Teon Banek

November 9, 2018

©@OS06

About Me

Teon Banek

e Graduated from University of Zagreb, Faculty of Electrical Engineering and
Computing

* Lead query engine developer at Memgraph

* Loves fencing, lasagne and black tea

® teon.banek@memgraph.com

i MEM Life of a Distributed Query — About 2 of 42

About Us

Memgraph Ltd.

e Startup, founded in 2016
* Building a graph database

¢ In-memory
¢ High-performance
* Distributed

® https://memgraph.com

l A LN:Em Life of a Distributed Query — About

30f 42

Outline

@ About

@ OpenCypher Query Language
@ Semantic Analysis

@ Query Planning and Optimization

@ Query Execution

i A 'MREM Life of a Distributed Query — About

4 of 42

SQL

e An SQL query walks into a bar and sees two tables. It walks up to them and
says "May | join you?”

l A MEM Life of a Distributed Query — OpenCypher Query Language 5of 42

GRAFH

SQL

* An SQL query walks into a bar and sees two tables. It walks up to them and
says "May | join you?”
® SELECT * FROM a, (SELECT * FROM b, c
WHERE b.rel_c = c.rel_b
AND b.id NOT IN (SELECT id FROM d
WHERE ..
)) WHERE ..

¢ Joining tables produces very hard to read queries.

i MEM Life of a Distributed Query — OpenCypher Query Language 50f 42
GRAP

openCypher
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Scotty
:Engineer

‘FriendOf
wmamﬁ

“FriendOf

MeCoy
:Doctor -

" Kirk
Oaptaln

HAnpoyE “Frlendot \

Spock Uhura
:Officer :Officer

i w‘ MREM Life of a Distributed Query — OpenCypher Query Language

6 of 42

Parsing

e antlr4
® Generates a parser from BNF like grammar description.
e antrl4 AST — our custom AST

e Allows for future support of other languages.
* Makes potential antrl4 replacement easier.

e Literal and parameter stripping
® Queries can be hashed and cached for reuse.

i MEMI Life of a Distributed Query — OpenCypher Query Language 7 of 42
GRAP

Semantic Analysis

® Various sanity checks:
® {rying to create the same element multiple times;
combining incompatible clauses (e.g. UNION and UNION ALL);

[J
® trying to use the same key twice to create a map;
° etc.

i MEMI Life of a Distributed Query — Semantic Analysis 8of 42
GRAP

Semantic Analysis

e Various sanity checks:
® {rying to create the same element multiple times;
e combining incompatible clauses (e.g. UNION and UNION ALL);
® trying to use the same key twice to create a map;
° etc.
* Generating symbols for variables.

® Validating variable scope and bindings.
¢ Checking for type mismatches.

i MEMI Life of a Distributed Query — Semantic Analysis 8of 42
GRAP

Symbol Generation

e For each variable a symbol is generated.
e Each symbols gets a space for its value on the frame.

i MEMI Life of a Distributed Query — Semantic Analysis 9 of 42
GRAP

Symbol Generation

e For each variable a symbol is generated.
e Each symbols gets a space for its value on the frame.

* Frame

* Data structure (array) for storing values during execution.
® Similar to a stack frame.
* No dynamic allocation, so the size can be determined statically.

i MEMI Life of a Distributed Query — Semantic Analysis 9 of 42
GRAP

Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Symbol | Value
a | null

i w‘ %Em Life of a Distributed Query — Semantic Analysis 10 of 42

Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Symbol | Value
a null
b null

i w‘ %Em Life of a Distributed Query — Semantic Analysis 10 of 42

Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:Friend0f]-> (b)
WHERE b :0fficer RETURN b.name AS b

Symbol | Value
a null
b null

anon_edge | null

i A %Em Life of a Distributed Query — Semantic Analysis 10 of 42

Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Symbol | Value
a null
b null

anon_edge | null
b (AS b) null

i A %Em Life of a Distributed Query — Semantic Analysis 10 of 42

Logical Operators

e Steps of work are described by logical operators.
e Similar, but different than operators of relational algebra found in SQL.

I\ MEMI Life of a Distributed Query — Query Planning and Optimization 11 0f 42
GRAPH

Logical Operators

» Steps of work are described by logical operators.

e Similar, but different than operators of relational algebra found in SQL.

® MATCH (a :Captain {name:"Kirk"})-[:Friend0f]->(b)
WHERE b :0fficer RETURN b.name AS b

A MEM Life of a Distributed Query — Query Planning and Optimization
d GRAPH

1 of 42

Logical Operators

» Steps of work are described by logical operators.

e Similar, but different than operators of relational algebra found in SQL.

® MATCH (a :Captain {name:"Kirk"})-[:Friend0f]->(b)
WHERE b :0fficer RETURN b.name AS b

¢ ScanAll — find all nodes in the graph

A MEM Life of a Distributed Query — Query Planning and Optimization
d GRAPH

1 of 42

Logical Operators

» Steps of work are described by logical operators.
e Similar, but different than operators of relational algebra found in SQL.

® MATCH (a :Captain {name:"Kirk"})-[:Friend0f]->(b)
WHERE b :0fficer RETURN b.name AS b

¢ ScanAll — find all nodes in the graph
® Expand — traverse all edges from a node

i MEM Life of a Distributed Query — Query Planning and Optimization 11 of 42
Rapt

Logical Operators

» Steps of work are described by logical operators.
e Similar, but different than operators of relational algebra found in SQL.

® MATCH (a :Captain {name:"Kirk"})-[:Friend0f]->(b)
WHERE b :0fficer RETURN b.name AS b
¢ ScanAll — find all nodes in the graph
® Expand — traverse all edges from a node
® Filter — apply a filter expression

i MEM Life of a Distributed Query — Query Planning and Optimization 11 of 42
Rapt

Logical Operators

» Steps of work are described by logical operators.
e Similar, but different than operators of relational algebra found in SQL.

® MATCH (a :Captain {name:"Kirk"})-[:Friend0f]->(b)
WHERE b :0fficer RETURN b.name AS b
¢ ScanAll — find all nodes in the graph
Expand — traverse all edges from a node
Filter — apply a filter expression
Produce — expressions to produce results

i MEM Life of a Distributed Query — Query Planning and Optimization 11 of 42
Rapt

Extracting Filter Information

e Extracting filters into regular form.

® MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :0fficer
RETURN b.name AS b

i A 'MkEm Life of a Distributed Query — Query Planning and Optimization 12 of 42

Extracting Filter Information

e Extracting filters into regular form.

e MATCH (a) -[:Friend0f]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :0fficer
RETURN b.name AS b

i A 'MkEm Life of a Distributed Query — Query Planning and Optimization

12 0f 42

Extracting Filter Information

e Extracting filters into regular form.

® MATCH (a) -[:FriendOf]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :0fficer
RETURN b.name AS b

i A 'MkEm Life of a Distributed Query — Query Planning and Optimization

12 0f 42

Extracting Filter Information

e Extracting filters into regular form.
® MATCH (a) -[anon_edge]l-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :0fficer
AND anon_edge :FriendOf
RETURN b.name AS b

i A 'MREM Life of a Distributed Query — Query Planning and Optimization 12 of 42

Extracting Filter Information

Extracting filters into regular form.

MATCH (a) -[anon_edgel-> (b)

WHERE a :Captain AND a.name = "Kirk"

AND b :0fficer

AND anon_edge :FriendOf

RETURN b.name AS b

Collecting information on symbols used in expressions.

* We want to apply filters as soon as possible.
e Potentially replace with index lookup.

i MEM Life of a Distributed Query — Query Planning and Optimization
Rapt

12 0f 42

How to Match?

e We can alter the order of matching and estimate the best one.

l A MEM Life of a Distributed Query — Query Planning and Optimization 13 of 42

GRAPH

How to Match?

* We can alter the order of matching and estimate the best one.
® MATCH (a) -[:FriendOf]-> (b)

l A MEm Life of a Distributed Query — Query Planning and Optimization 13 of 42

How to Match?

e We can alter the order of matching and estimate the best one.
® MATCH (a) -[:Friend0f]-> (b)
® MATCH (b) <-[:FriendOf]- (a)

i A MEM Life of a Distributed Query — Query Planning and Optimization 13 of 42
GRAF

How to Match?

e We can alter the order of matching and estimate the best one.
® MATCH (a) -[:Friend0f]-> (b)
® MATCH (b) <-[:FriendOf]- (a)
® MATCH (a), (b), (a) -[:Friend0f]-> (b)

MEM Life of a Distributed Query — Query Planning and Optimization 13 0f 42
“ GRAFH

How to Match?

e We can alter the order of matching and estimate the best one.
® MATCH (a) -[:Friend0f]-> (b)
® MATCH (b) <-[:FriendOf]- (a)
® MATCH (a), (b), (a) -[:Friend0f]-> (b)
® MATCH (a), (b), (b) <-[:FriendOfl- (a)

MEM Life of a Distributed Query — Query Planning and Optimization 13 0f 42
“ GRAFH

MATCH (a)-[:Friend0f]->(b)

ScanAll (a)
® ScanAll fora

i A MEM Life of a Distributed Query — Query Planning and Optimization 14 of 42
GRAF

MATCH (a)-[:Friend0f]->(b)

ScanAll (a)
® ScanAll fora
e Filter based on a {
Filter ()

i A MEM Life of a Distributed Query — Query Planning and Optimization 14 of 42

GRAPH

MATCH (a)-[:Friend0f]->(b)

Indexed Scan?

ScanAll (a)
® ScanAll fora
e Filter based on a {
e Canwereplace ScanAll + Filter el

with index?

i A MEM Life of a Distributed Query — Query Planning and Optimization 14 of 42
GRAF

MATCH (a)-[:Friend0f]->(b)

Indexed Scan?

ScanAll (a)
® ScanAll fora
e Filter based on a {
e Canwe replace ScanAll + Filter Bl

with index?
e Filter suitable for indexed lookup?
® |ndex exists?

l A MEM Life of a Distributed Query — Query Planning and Optimization 14 of 42
GRAF

MATCH (a)-[:Friend0f]->(b)

Indexed Scan?

ScanAll (a)
ScanAll for a
Filter based on a {
Can we replace ScanAll + Filter —_—
with index?
e Filter suitable for indexed lookup? lL
® |ndex exists?
Expand {a, b)

Expand fromatob

A MEM

Life of a Distributed Query — Query Planning and Optimization

14 0f 42

MATCH (a)-[:Friend0f]->(b)

Indexed Scan?

ScanAll for a ScanAll (a)
Filter based on a {
Can we replace ScanAll + Filter -
with index?

e Filter suitable for indexed lookup? |L

® |ndex exists?
Expand fromatob Expand (a, b)
Filter based on a and b L

Filter (a, b)
IAMEM Life of a Distributed Query — Query Planning and Optimization 14 of 42

MATCH (a), (b), (a)-[:Friend0f]->(b)

ScanAll (a)

® ScanAll fora

l A MEM Life of a Distributed Query — Query Planning and Optimization 15 of 42
GRAF

MATCH (a), (b), (a)-[:Friend0f]->(b)

Indexed Scan?

ScanAll (a)
e ScanAll fora {
* Filter based on a, potentially index Sl

l A ﬂl\EﬂlI Life of a Distributed Query — Query Planning and Optimization 15 of 42

MATCH (a), (b), (a)-[:Friend0f]->(b)

Indexed Scan? Indexed Scan?

ScanAll (a) ScanAll (by
® ScanAll fora
A . A Filter (a) Filter (b}
* Filter based on a, potentially index | |
* Same as above for finding b ' !
Carteslan

l A MEM Life of a Distributed Query — Query Planning and Optimization 15 of 42
GREAPH

MATCH (a), (b), (a)-[:Friend0f]->(b)
ScanAll (a) ScanAll (by
| l
ScanAll fora
A . A Filter (a) Filter (b}
Filter based on a, potentially index | |
Same as above for finding b ' !
Expand fromatob Cirieden
* Immediately produces edges |
connected fromatob frgmciia b

A MEM

Life of a Distributed Query — Query Planning and Optimization

150f 42

Plan Cost Estimation

» Estimate the cost of each operator and the total cost, based on:

e cardinality increase/reduction
® execution cost

i MEMI Life of a Distributed Query — Query Planning and Optimization 16 of 42
GRAP

Plan Cost Estimation

» Estimate the cost of each operator and the total cost, based on:

e cardinality increase/reduction
® execution cost

* Two sub-plans for matching:

@ ScanAll(indexed) — Expand — Filter
@ ScanAll(indexed) — ScanAll(indexed) — Cartesian — Expand

i MEMI Life of a Distributed Query — Query Planning and Optimization 16 of 42
GRAP

Plan Cost Estimation

» Estimate the cost of each operator and the total cost, based on:

e cardinality increase/reduction
® execution cost

* Two sub-plans for matching:

@ ScanAll(indexed) — Expand — Filter
@ ScanAll(indexed) — ScanAll(indexed) — Cartesian — Expand

e Scanned vertices degrees vs indexed lookup

* |f degree is low, 1st plan has lower cost.
e Otherwise, the 2nd plan will be better.

i MEMI Life of a Distributed Query — Query Planning and Optimization 16 of 42
GRAP

Planning Distributed Query

e Worker machines store a sub-graph.
e Each worker can produce a subset of results.

i MEMI Life of a Distributed Query — Query Planning and Optimization 17 of 42
GRAP

Planning Distributed Query

e Worker machines store a sub-graph.

e Each worker can produce a subset of results.
e ScanAll(indexed) — Expand — Filter

® Final results are merged on master machine.
® Expand may need to communicate with other workers.

i MEMI Life of a Distributed Query — Query Planning and Optimization 17 of 42
GRAP

Planning Distributed Query

Worker machines store a sub-graph.

Each worker can produce a subset of results.
ScanAll(indexed) — Expand — Filter

® Final results are merged on master machine.

® Expand may need to communicate with other workers.
ScanAll(indexed) — ScanAll(indexed) — Cartesian — Expand

* Master needs to get the Cartesian of ScanA11 to execute Expand.
® May cause potentially high memory consumption or workload.
® No need for communication between worker machines.

i MEMI Life of a Distributed Query — Query Planning and Optimization
GRAFE

17 of 42

Planning Distributed Query

Worker machines store a sub-graph.
Each worker can produce a subset of results.

ScanAll(indexed) — Expand — Filter

® Final results are merged on master machine.
® Expand may need to communicate with other workers.

ScanAll(indexed) — ScanAll(indexed) — Cartesian — Expand

* Master needs to get the Cartesian of ScanA11 to execute Expand.
® May cause potentially high memory consumption or workload.
® No need for communication between worker machines.

Cost estimator will need to estimate communication overhead.

i MEMI Life of a Distributed Query — Query Planning and Optimization
GRAFE

17 of 42

Final Plan

ScanByIndex
{a :Captain
{name: "Kirk"])

Expand (a, b)

|

Filter (a, b)

l

Produce
(b.name)

A MEM Life of a Distributed Query — Query Planning and Optimization
d GRAPH

18 0f 42

Final Plan

Produce
(b.name)

I

Fllter (a, b)

I

Expand (a, b)

I

ScanByIndex
{a :Captain
{name: "Kirk"})

A MEM Life of a Distributed Query — Query Planning and Optimization
d GRAPH

18 0f 42

Produce
(b.name)

l

Filter (a, b)

I

Expand (a, b)

1

ScanByIndex
{8 :Captain
{name: “Kirk"})

A MEM

Final Plan

But how do we execute it?

Life of a Distributed Query — Query Planning and Optimization

18 of 42

Pull Mechanism

e |terative approach

® Each operator produces a Cursor (iterator).
e Calling Pull on top of the plan cursor produces a single result.

l A MEM Life of a Distributed Query — Query Execution 19 of 42

GRAFH

Pull Mechanism

e |terative approach

® Each operator produces a Cursor (iterator).
e Calling Pull on top of the plan cursor produces a single result.

* Lazy evaluation saves memory.
e Limiting or skipping results is natural.

i MEMI Life of a Distributed Query — Query Execution 19 of 42
GRAP

Pull Mechanism

lterative approach

® Each operator produces a Cursor (iterator).
e Calling Pull on top of the plan cursor produces a single result.

Lazy evaluation saves memory.

Limiting or skipping results is natural.
But some operations don't play nice:

e ordering results and
® CRUD operations.

i MEMI Life of a Distributed Query — Query Execution
GRAFE

19 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

f“ MREM Life of a Distributed Query — Query Execution 20 of 42

MATCH (a :Captain {name:

Execution

"Kirk"}) -[:FriendOf]-> (b)

WHERE b :0fficer RETURN b.name AS b

Produce
(b.name)

]

Fiiter (a, b)

|

Expand (a. b)

|

ScanByIndex
{a :Captain
{name: "Kirk"})

INMEN

Symbol | Value

a null
b null
anon_edge | null
b (AS b) null

Life of a Distributed Query — Query Execution

20 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scolty {b.name)
:Engineer J
FriendOf]
McCoy wmam | Sym b0| ‘ Value
:Doctor A] Filter (a, b) a null
Kirk }
Captaln]) b null
AL onn o] anon_edge | null
] b (AS b) null
Spock Uhura
2l iifizer ScanByIndex
{a :Captain

{name: "Kirk"})

i A %Em Life of a Distributed Query — Query Execution 21 0f 42

MATCH (a :Captain {name:
WHERE b :0fficer RETURN b.name AS b

Scotty
‘Engineer

Spock
Officar |

Uhura
Officer

INMEN

Execution

"Kirk"}) -[:FriendOf]-> (b)

Produce
(name)

]

Filter (a, by
| Expand (a, b)

ScanByindex
(& zCaptain
e *Kirk*})|

Symbol | Value
a Kirk
b null
anon_edge | null
b (AS b) null

Life of a Distributed Query — Query Execution

22 0f 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (bname)
:Engineer
= !
oo Connas Symbol | Value
@ jii g a Kirk

cf;;::rn _]; b Spock

o Emnd{ﬂ_b]-; anon_edge | Kirk, Spock
o : ' b (AS b) null

Spock Uhura
Officer | Officer ScanByindex
= (& :Captain
{narme: “Kirk*}),

i A MREm Life of a Distributed Query — Query Execution 23 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (bname)
:Engineer
= |
oo Connas Symbol | Value
‘Doctor Hem, Filtar (a, b)

a Kirk

cf;;,n _ b Spock

PO et Emnd{ﬂ‘m- anon_edge | Kirk, Spock
\F’*’“""' . b (AS b) null

Spock Uhura
Officer | Officer ScanByindex
= (& :Captain
{narme: “Kirk*}),

i A %Em Life of a Distributed Query — Query Execution 24 of 42

MATCH (a :Captain {name:

Execution
"Kirk"}) -[:FriendOf]-> (b)

WHERE b :0fficer RETURN b.name AS b

Scotty
-Engineer.
FriendOF

McCoy / “Commands
:Doctor Fnemu :

. Kirk
:Captain
Mmy \
Spock Uhura
‘Officer :Officer

INMEN

Produes
(bname)

Filtar (a, k)
Expand (&, b)
ScanByindex
= :Caplain

{natne: “Kirk*])

Symbol Value
a Kirk
b Spock
anon_edge | Kirk, Spock
b (AS b) "Spock"

250f 42

Life of a Distributed Query — Query Execution

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (name)
:Engineer
= |
 MeCoy i Symbol | Value
‘Doctar - Hem, Filear (a, b} a Kirk

cf;;::rn b McCoy

o Emnd{ﬂ_b]-; anon_edge | Kirk, McCoy
e I b (AS b) "Spock"

Spock Uhura
Officer Officer ScanByinger
(& :Captain
{names: “Kirk“1)

i A 'MkEm Life of a Distributed Query — Query Execution 26 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (name)
:Engineer
= |
 MeCoy i Symbol | Value
‘Doctor - Hem, Flitar (a, b}

a Kirk

cf;;m _ b McCoy

PO et Emnd{ﬂ‘m- anon_edge | Kirk, McCoy
\F’*’“""' :]: b (AS b) "Spock"

Spock Uhura
Officer Officer ScanByinger
(& :Captain
{names: “Kirk“1)

i A %Em Life of a Distributed Query — Query Execution 27 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (name)
:Engineer
= |
MoCoy i Symbol | Value
‘Doctor Hem, Filtar (a, b} a Kirk

Kirk)
Ca;;lafn b Uhura

W s Emnd{ﬂ_b]-; anon_edge | Kirk, Uhura
“FriandOl I b (AS b) "SpOCk"

Spock Uhura
Officer Officer ScanByinger
~ (& :Captain
{names: “Kirk“1)

i A 'MkEm Life of a Distributed Query — Query Execution 28 of 42

Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :0fficer RETURN b.name AS b

Produce
Scotty (name)
:Engineer
o |
MoCoy i Symbol | Value
‘Doctor Hem, Filtar (a, b)

a Kirk

Kirk h -
Caplafn) b Uhura

PO et Emnd{ﬂ‘m- anon_edge | Kirk, Uhura
\Fr-snacu :]: b (AS b) "SpOCk"

Spock Uhura
Officer Officer ScanByinger
~ (& :Captain
{names: “Kirk“1)

i A 'MkEm Life of a Distributed Query — Query Execution 20 of 42

MATCH (a :Captain {name:

Execution
"Kirk"}) -[:FriendOf]-> (b)

WHERE b :0fficer RETURN b.name AS b

Scotty
-Engineer.
FriendOF

McCoy / “Commands
:Doctor Fnemu :

. Kirk
:Captain
Mmy \
Spock Uhura
‘Officer :Officer

INMEN

Produes
(bname)

Filtar (a, k)
Expand (&, b)
ScanByindex
= :Caplain

{natne: “Kirk*])

Symbol Value
a Kirk
b Uhura
anon_edge | Kirk, Uhura
b (AS b) "Uhura"

300f 42

Life of a Distributed Query — Query Execution

MATCH (a :Captain {name:

Execution
"Kirk"}) -[:FriendOf]-> (b)

WHERE b :0fficer RETURN b.name AS b

Scotty
-Engineer.
FriendOF

McCoy / “Commands
:Doctor Fnemu :

. Kirk
:Captain
Mmy \
Spock Uhura
‘Officer :Officer
MEM
“ A GRAPH

Produce
(bnama)

I

Filter (a, b}
Expand (&, b)

{a :Captain

ScanByindex

{mame: *Kirk*])

Symbol Value

a Kirk

b Uhura
anon_edge | Kirk, Uhura
b (AS b) "Uhura"

Life of a Distributed Query — Query Execution

310f42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Scotty
‘Engineer
:FriendOf

McCoy / “Commands
:Doctor Fﬂmo,

Kirk
C-aptaln
Mm“/ \
Spock Uhura
:Officer :Officer

i A 'MREM Life of a Distributed Query — Query Execution 320f 42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true

RETURN a LIMIT 1

Scotty

‘Engineer
:FriendOf

McCoy / “Commands
:Doctor - ﬁmmo,

e
C-aptaln
MMﬁ/ \
Spock Uhura
:Officer :Officer

INMEN

Limit
M
[a
Prod 5
ucn
T
{a) E
[R
Acumiiae
:’
SetPropes
i
0
R
K
scanBymndes B
(a Oficer) R

Life of a Distributed Query — Query Execution

320f 42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Scotty
:Engineer
M
“Commands [&
McCoy nch s
Froduce
:Dactor Fﬂendol : o ;
g LR Symbol | Value
Oaptam — a | null
“Annays FriendOt !
SetProperty 3
Q
Spock Uhura B
:Officer :Officer K
scubymdse B
(i Oicee) R

i w‘ MREM Life of a Distributed Query — Query Execution 32 0f 42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Limit
Scotty i
:Engineer I
Prod
MeCoy w‘"lam | in;me
‘Doctar FriandQt [
Capia[n Accumulate
_Anmys “FriandOt
FriandOl
SetProperty
Spock | Uhura I
Officer | | :Officer =
— ScanBylndex |
‘{a :Officer)

Symbol | Value

a ‘Spock

i A 'MREM Life of a Distributed Query — Query Execution 330f42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Limit
Scotty i
:Engineer I
Produce
McCoy wﬂlam)
‘Doctar FriandOt [

Symbol | Value

Capia[n Accumulate

) a ‘ Spock
_Anmys “FriandOt
FriandQl i i
\ SetProparty |

Spock | Uhura

Officer | J Officer

— | ScanBylndex
1 Oficer)

i A 'MREM Life of a Distributed Query — Query Execution 340f 42

MATCH (a
RETURN a LIMIT 1

Scotty

-Engineer.
FriendOf

McCoy / “Commands
:Doctor Fﬂemu)

Klrk A
Captaln
Spock Uhura
‘Officer :Officer

INMEN

CRUD Execution

:0fficer) SET a.arrogant = true

Limit

| produce
(@)

l

‘ Accumulate |

|

SetProperty

[

| ScanBylndex
{a Oficer)

Symbol | Value
a ‘Spock

Life of a Distributed Query — Query Execution 350f 42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Limit
Scotty i
:Engineer I
Produce
McCoy wﬂlam)
‘Doctar FriandOt [
Capia[n Accumulate
_Nlmyﬁ “FriandOt
FriandOl
SetProperty
Spock Uhura I
‘Officer Officer | B
— ScanBylndex |
‘{a :Officer)

Symbol | Value

a ‘ Uhura

i A 'MREM Life of a Distributed Query — Query Execution 36 of 42

CRUD Execution

MATCH (a :0fficer) SET a.arrogant = true
RETURN a LIMIT 1

Limit
Scotty i
:Engineer I
Produce
McCoy wﬂlam)
‘Doctar FriandOt [

Symbol | Value

Capia[n Accumulate

) a ‘ Uhura
2hnrays Friendt
FrisndOl i)
\ SetProperty |

Spock Uhura

Officer Officer |

e | ScanBylndex
1 Oficer)

i A 'MREM Life of a Distributed Query — Query Execution 37 of 42

MATCH (a
RETURN a LIMIT 1

Scotty

-Engineer.
FriendOf

McCoy / “Commands
:Doctor Fﬂemu)

Klrk A
Captaln
Spock Uhura
‘Officer :Officer

INMEN

CRUD Execution

:0fficer) SET a.arrogant = true

Limit

| produce
(@)

l

‘ Accumulate |

|

SetProperty

[

| ScanBylndex
{a Oficer)

Symbol | Value

a ‘Uhura

Life of a Distributed Query — Query Execution 38 of 42

MATCH (a
RETURN a LIMIT 1

Scotty
-Engineer.
FriendOF

McCoy / “Commands
:Doctor Fﬂemu)

Kirk
Captaln
Spock Uhura
‘Officer :Officer

INMEN

CRUD Execution

:0fficer) SET a.arrogant = true

Limit

| produce
(@)

l

‘ Accumulate |

I

SetProperty

[

| ScanBylndex
{a Oficer)

Symbol | Value
a ‘Spock

Life of a Distributed Query — Query Execution 39 of 42

MATCH (a
RETURN a LIMIT 1

Scotty

-Engineer.
FriendOf

McCoy / “Commands
:Doctor Fﬂemu)

Klrk A
Captaln
Spock Uhura
‘Officer :Officer

INMEN

CRUD Execution

:0fficer) SET a.arrogant = true

Limit
Produce |
(2}

Accumulate

|

SetProperty

[

| ScanBylndex
{a Oficer)

Symbol | Value
a ‘Spock

Life of a Distributed Query — Query Execution 40 of 42

MATCH (a
RETURN a LIMIT 1

Scotty
-Engineer.
FriendOF

McCoy / “Commands
:Doctor Fﬂemu)

Klrk A
Captaln
Spock Uhura
‘Officer :Officer

INMEN

CRUD Execution

:0fficer) SET a.arrogant = true

‘ Limit
| produce
(@)

l

Accumulate

|

SetProperty

[

| ScanBylndex
{a Oficer)

Symbol | Value
a ‘Spock

Life of a Distributed Query — Query Execution 41 0of 42

The End

* Thank you for your attention!

l A MEM Life of a Distributed Query — Query Execution 42 of 42

GRAFH

The End

e Thank you for your attention!
* Do you have any questions?

l A MEM Life of a Distributed Query — Query Execution 42 of 42

GRAFH

The End

* Thank you for your attention!
¢ Do you have any questions?
* We are hiring: careers@memgraph. com

l A MEM Life of a Distributed Query — Query Execution 42 of 42

GRAPH

	About
	OpenCypher Query Language
	Semantic Analysis
	Query Planning and Optimization
	Query Execution

