
Life of a Distributed Query

Teon Banek

November Ѵ, ѰѵȢ8

cbnd



About Me

Teon Banek

• Graduated from University of Zagreb, Faculty of Electrical Engineering and
Computing

• Lead query engine developer at Memgraph
• Loves fencing, lasagne and black tea
• teon.banek@memgraph.com

Life of a Distributed Query — About Ѱ of ѲѰ



About Us

Memgraph Ltd.

• Startup, founded in ѰѵȢ6
• Building a graph database

• In-memory
• High-performance
• Distributed

• https://memgraph.com

Life of a Distributed Query — About ѱ of ѲѰ



Outline

Ȣ About

Ѱ OpenCypher Query Language

ѱ Semantic Analysis

Ѳ Query Planning and Optimization

ѳ Query Execution

Life of a Distributed Query — About Ѳ of ѲѰ



SQL

• An SQL query walks into a bar and sees two tables. It walks up to them and
says ”May I join you?”

• SELECT * FROM a, (SELECT * FROM b, c
WHERE b.rel_c = c.rel_b
AND b.id NOT IN (SELECT id FROM d
WHERE …
)) WHERE …

• Joining tables produces very hard to read queries.

Life of a Distributed Query — OpenCypher Query Language ѳ of ѲѰ



SQL

• An SQL query walks into a bar and sees two tables. It walks up to them and
says ”May I join you?”

• SELECT * FROM a, (SELECT * FROM b, c
WHERE b.rel_c = c.rel_b
AND b.id NOT IN (SELECT id FROM d
WHERE …
)) WHERE …

• Joining tables produces very hard to read queries.

Life of a Distributed Query — OpenCypher Query Language ѳ of ѲѰ



openCypher
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Life of a Distributed Query — OpenCypher Query Language 6 of ѲѰ



Parsing

• antlrѲ
• Generates a parser from BNF like grammar description.

• antrlѲ AST→ our custom AST
• Allows for future support of other languages.
• Makes potential antrlѲ replacement easier.

• Literal and parameter stripping
• Queries can be hashed and cached for reuse.

Life of a Distributed Query — OpenCypher Query Language ƭ of ѲѰ



Semantic Analysis

• Various sanity checks:
• trying to create the same element multiple times;
• combining incompatible clauses (e.g. UNION and UNION ALL);
• trying to use the same key twice to create a map;
• etc.

• Generating symbols for variables.
• Validating variable scope and bindings.
• Checking for type mismatches.

Life of a Distributed Query — Semantic Analysis 8 of ѲѰ



Semantic Analysis

• Various sanity checks:
• trying to create the same element multiple times;
• combining incompatible clauses (e.g. UNION and UNION ALL);
• trying to use the same key twice to create a map;
• etc.

• Generating symbols for variables.
• Validating variable scope and bindings.
• Checking for type mismatches.

Life of a Distributed Query — Semantic Analysis 8 of ѲѰ



Symbol Generation

• For each variable a symbol is generated.
• Each symbols gets a space for its value on the frame.

• Frame
• Data structure (array) for storing values during execution.
• Similar to a stack frame.
• No dynamic allocation, so the size can be determined statically.

Life of a Distributed Query — Semantic Analysis Ѵ of ѲѰ



Symbol Generation

• For each variable a symbol is generated.
• Each symbols gets a space for its value on the frame.
• Frame

• Data structure (array) for storing values during execution.
• Similar to a stack frame.
• No dynamic allocation, so the size can be determined statically.

Life of a Distributed Query — Semantic Analysis Ѵ of ѲѰ



Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null

b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Semantic Analysis Ȣѵ of ѲѰ



Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null

anon_edge null
b (AS b) null

Life of a Distributed Query — Semantic Analysis Ȣѵ of ѲѰ



Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null
anon_edge null

b (AS b) null

Life of a Distributed Query — Semantic Analysis Ȣѵ of ѲѰ



Symbol Generation

MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Semantic Analysis Ȣѵ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.

• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph
• Expand – traverse all edges from a node
• Filter – apply a Ƥlter expression
• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph
• Expand – traverse all edges from a node
• Filter – apply a Ƥlter expression
• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph

• Expand – traverse all edges from a node
• Filter – apply a Ƥlter expression
• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph
• Expand – traverse all edges from a node

• Filter – apply a Ƥlter expression
• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph
• Expand – traverse all edges from a node
• Filter – apply a Ƥlter expression

• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Logical Operators

• Steps of work are described by logical operators.
• Similar, but different than operators of relational algebra found in SQL.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer RETURN b.name AS b

• ScanAll – Ƥnd all nodes in the graph
• Expand – traverse all edges from a node
• Filter – apply a Ƥlter expression
• Produce – expressions to produce results

Life of a Distributed Query — Query Planning and Optimization ȢȢ of ѲѰ



Extracting Filter Information

• Extracting Ƥlters into regular form.
• MATCH (a :Captain {name:"Kirk"})-[:FriendOf]->(b)
WHERE b :Officer
RETURN b.name AS b

• Collecting information on symbols used in expressions.
• We want to apply Ƥlters as soon as possible.
• Potentially replace with index lookup.

Life of a Distributed Query — Query Planning and Optimization ȢѰ of ѲѰ



Extracting Filter Information

• Extracting Ƥlters into regular form.
• MATCH (a) -[:FriendOf]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
RETURN b.name AS b

• Collecting information on symbols used in expressions.
• We want to apply Ƥlters as soon as possible.
• Potentially replace with index lookup.

Life of a Distributed Query — Query Planning and Optimization ȢѰ of ѲѰ



Extracting Filter Information

• Extracting Ƥlters into regular form.
• MATCH (a) -[:FriendOf]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
RETURN b.name AS b

• Collecting information on symbols used in expressions.
• We want to apply Ƥlters as soon as possible.
• Potentially replace with index lookup.

Life of a Distributed Query — Query Planning and Optimization ȢѰ of ѲѰ



Extracting Filter Information

• Extracting Ƥlters into regular form.
• MATCH (a) -[anon_edge]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
AND anon_edge :FriendOf
RETURN b.name AS b

• Collecting information on symbols used in expressions.
• We want to apply Ƥlters as soon as possible.
• Potentially replace with index lookup.

Life of a Distributed Query — Query Planning and Optimization ȢѰ of ѲѰ



Extracting Filter Information

• Extracting Ƥlters into regular form.
• MATCH (a) -[anon_edge]-> (b)
WHERE a :Captain AND a.name = "Kirk"
AND b :Officer
AND anon_edge :FriendOf
RETURN b.name AS b

• Collecting information on symbols used in expressions.
• We want to apply Ƥlters as soon as possible.
• Potentially replace with index lookup.

Life of a Distributed Query — Query Planning and Optimization ȢѰ of ѲѰ



How to Match?

• We can alter the order of matching and estimate the best one.

• MATCH (a) -[:FriendOf]-> (b)
• MATCH (b) <-[:FriendOf]- (a)
• MATCH (a), (b), (a) -[:FriendOf]-> (b)
• MATCH (a), (b), (b) <-[:FriendOf]- (a)

Life of a Distributed Query — Query Planning and Optimization Ȣѱ of ѲѰ



How to Match?

• We can alter the order of matching and estimate the best one.
• MATCH (a) -[:FriendOf]-> (b)

• MATCH (b) <-[:FriendOf]- (a)
• MATCH (a), (b), (a) -[:FriendOf]-> (b)
• MATCH (a), (b), (b) <-[:FriendOf]- (a)

Life of a Distributed Query — Query Planning and Optimization Ȣѱ of ѲѰ



How to Match?

• We can alter the order of matching and estimate the best one.
• MATCH (a) -[:FriendOf]-> (b)
• MATCH (b) <-[:FriendOf]- (a)

• MATCH (a), (b), (a) -[:FriendOf]-> (b)
• MATCH (a), (b), (b) <-[:FriendOf]- (a)

Life of a Distributed Query — Query Planning and Optimization Ȣѱ of ѲѰ



How to Match?

• We can alter the order of matching and estimate the best one.
• MATCH (a) -[:FriendOf]-> (b)
• MATCH (b) <-[:FriendOf]- (a)
• MATCH (a), (b), (a) -[:FriendOf]-> (b)

• MATCH (a), (b), (b) <-[:FriendOf]- (a)

Life of a Distributed Query — Query Planning and Optimization Ȣѱ of ѲѰ



How to Match?

• We can alter the order of matching and estimate the best one.
• MATCH (a) -[:FriendOf]-> (b)
• MATCH (b) <-[:FriendOf]- (a)
• MATCH (a), (b), (a) -[:FriendOf]-> (b)
• MATCH (a), (b), (b) <-[:FriendOf]- (a)

Life of a Distributed Query — Query Planning and Optimization Ȣѱ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a

• Filter based on a
• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b
• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a

• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b
• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a
• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b
• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a
• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b
• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a
• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b

• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a
• Can we replace ScanAll + Filter
with index?

• Filter suitable for indexed lookup?
• Index exists?

• Expand from a to b
• Filter based on a and b

Life of a Distributed Query — Query Planning and Optimization ȢѲ of ѲѰ



MATCH (a), (b), (a)-[:FriendOf]->(b)

• ScanAll for a

• Filter based on a, potentially index
• Same as above for Ƥnding b
• Expand from a to b

• Immediately produces edges
connected from a to b

Life of a Distributed Query — Query Planning and Optimization Ȣѳ of ѲѰ



MATCH (a), (b), (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a, potentially index

• Same as above for Ƥnding b
• Expand from a to b

• Immediately produces edges
connected from a to b

Life of a Distributed Query — Query Planning and Optimization Ȣѳ of ѲѰ



MATCH (a), (b), (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a, potentially index
• Same as above for Ƥnding b

• Expand from a to b
• Immediately produces edges

connected from a to b

Life of a Distributed Query — Query Planning and Optimization Ȣѳ of ѲѰ



MATCH (a), (b), (a)-[:FriendOf]->(b)

• ScanAll for a
• Filter based on a, potentially index
• Same as above for Ƥnding b
• Expand from a to b

• Immediately produces edges
connected from a to b

Life of a Distributed Query — Query Planning and Optimization Ȣѳ of ѲѰ



Plan Cost Estimation

• Estimate the cost of each operator and the total cost, based on:
• cardinality increase/reduction
• execution cost

• Two sub-plans for matching:
Ȣ ScanAll(indexed) → Expand → Filter
Ѱ ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand

• Scanned vertices degrees vs indexed lookup
• If degree is low, Ȣst plan has lower cost.
• Otherwise, the Ѱnd plan will be better.

Life of a Distributed Query — Query Planning and Optimization Ȣ6 of ѲѰ



Plan Cost Estimation

• Estimate the cost of each operator and the total cost, based on:
• cardinality increase/reduction
• execution cost

• Two sub-plans for matching:
Ȣ ScanAll(indexed) → Expand → Filter
Ѱ ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand

• Scanned vertices degrees vs indexed lookup
• If degree is low, Ȣst plan has lower cost.
• Otherwise, the Ѱnd plan will be better.

Life of a Distributed Query — Query Planning and Optimization Ȣ6 of ѲѰ



Plan Cost Estimation

• Estimate the cost of each operator and the total cost, based on:
• cardinality increase/reduction
• execution cost

• Two sub-plans for matching:
Ȣ ScanAll(indexed) → Expand → Filter
Ѱ ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand

• Scanned vertices degrees vs indexed lookup
• If degree is low, Ȣst plan has lower cost.
• Otherwise, the Ѱnd plan will be better.

Life of a Distributed Query — Query Planning and Optimization Ȣ6 of ѲѰ



Planning Distributed Query

• Worker machines store a sub-graph.
• Each worker can produce a subset of results.

• ScanAll(indexed) → Expand → Filter
• Final results are merged on master machine.
• Expandmay need to communicate with other workers.

• ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand
• Master needs to get the Cartesian of ScanAll to execute Expand.
• May cause potentially high memory consumption or workload.
• No need for communication between worker machines.

• Cost estimator will need to estimate communication overhead.

Life of a Distributed Query — Query Planning and Optimization Ȣƭ of ѲѰ



Planning Distributed Query

• Worker machines store a sub-graph.
• Each worker can produce a subset of results.
• ScanAll(indexed) → Expand → Filter

• Final results are merged on master machine.
• Expandmay need to communicate with other workers.

• ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand
• Master needs to get the Cartesian of ScanAll to execute Expand.
• May cause potentially high memory consumption or workload.
• No need for communication between worker machines.

• Cost estimator will need to estimate communication overhead.

Life of a Distributed Query — Query Planning and Optimization Ȣƭ of ѲѰ



Planning Distributed Query

• Worker machines store a sub-graph.
• Each worker can produce a subset of results.
• ScanAll(indexed) → Expand → Filter

• Final results are merged on master machine.
• Expandmay need to communicate with other workers.

• ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand
• Master needs to get the Cartesian of ScanAll to execute Expand.
• May cause potentially high memory consumption or workload.
• No need for communication between worker machines.

• Cost estimator will need to estimate communication overhead.

Life of a Distributed Query — Query Planning and Optimization Ȣƭ of ѲѰ



Planning Distributed Query

• Worker machines store a sub-graph.
• Each worker can produce a subset of results.
• ScanAll(indexed) → Expand → Filter

• Final results are merged on master machine.
• Expandmay need to communicate with other workers.

• ScanAll(indexed) → ScanAll(indexed) → Cartesian → Expand
• Master needs to get the Cartesian of ScanAll to execute Expand.
• May cause potentially high memory consumption or workload.
• No need for communication between worker machines.

• Cost estimator will need to estimate communication overhead.

Life of a Distributed Query — Query Planning and Optimization Ȣƭ of ѲѰ



Final Plan

Life of a Distributed Query — Query Planning and Optimization Ȣ8 of ѲѰ



Final Plan

Life of a Distributed Query — Query Planning and Optimization Ȣ8 of ѲѰ



Final Plan

But how do we execute it?

Life of a Distributed Query — Query Planning and Optimization Ȣ8 of ѲѰ



Pull Mechanism

• Iterative approach
• Each operator produces a Cursor (iterator).
• Calling Pull on top of the plan cursor produces a single result.

• Lazy evaluation saves memory.
• Limiting or skipping results is natural.
• But some operations don’t play nice:

• ordering results and
• CRUD operations.

Life of a Distributed Query — Query Execution ȢѴ of ѲѰ



Pull Mechanism

• Iterative approach
• Each operator produces a Cursor (iterator).
• Calling Pull on top of the plan cursor produces a single result.

• Lazy evaluation saves memory.
• Limiting or skipping results is natural.

• But some operations don’t play nice:
• ordering results and
• CRUD operations.

Life of a Distributed Query — Query Execution ȢѴ of ѲѰ



Pull Mechanism

• Iterative approach
• Each operator produces a Cursor (iterator).
• Calling Pull on top of the plan cursor produces a single result.

• Lazy evaluation saves memory.
• Limiting or skipping results is natural.
• But some operations don’t play nice:

• ordering results and
• CRUD operations.

Life of a Distributed Query — Query Execution ȢѴ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Query Execution Ѱѵ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Query Execution Ѱѵ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a null
b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Query Execution ѰȢ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b null
anon_edge null
b (AS b) null

Life of a Distributed Query — Query Execution ѰѰ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Spock
anon_edge Kirk, Spock
b (AS b) null

Life of a Distributed Query — Query Execution Ѱѱ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Spock
anon_edge Kirk, Spock
b (AS b) null

Life of a Distributed Query — Query Execution ѰѲ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Spock
anon_edge Kirk, Spock
b (AS b) "Spock"

Life of a Distributed Query — Query Execution Ѱѳ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b McCoy
anon_edge Kirk, McCoy
b (AS b) "Spock"

Life of a Distributed Query — Query Execution Ѱ6 of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b McCoy
anon_edge Kirk, McCoy
b (AS b) "Spock"

Life of a Distributed Query — Query Execution Ѱƭ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Uhura
anon_edge Kirk, Uhura
b (AS b) "Spock"

Life of a Distributed Query — Query Execution Ѱ8 of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Uhura
anon_edge Kirk, Uhura
b (AS b) "Spock"

Life of a Distributed Query — Query Execution ѰѴ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Uhura
anon_edge Kirk, Uhura
b (AS b) "Uhura"

Life of a Distributed Query — Query Execution ѱѵ of ѲѰ



Execution
MATCH (a :Captain {name: "Kirk"}) -[:FriendOf]-> (b)
WHERE b :Officer RETURN b.name AS b

Symbol Value
a Kirk
b Uhura
anon_edge Kirk, Uhura
b (AS b) "Uhura"

Life of a Distributed Query — Query Execution ѱȢ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a null

Life of a Distributed Query — Query Execution ѱѰ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a null

Life of a Distributed Query — Query Execution ѱѰ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a null

Life of a Distributed Query — Query Execution ѱѰ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution ѱѱ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution ѱѲ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution ѱѳ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Uhura

Life of a Distributed Query — Query Execution ѱ6 of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Uhura

Life of a Distributed Query — Query Execution ѱƭ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Uhura

Life of a Distributed Query — Query Execution ѱ8 of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution ѱѴ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution Ѳѵ of ѲѰ



CRUD Execution
MATCH (a :Officer) SET a.arrogant = true
RETURN a LIMIT 1

Symbol Value
a Spock

Life of a Distributed Query — Query Execution ѲȢ of ѲѰ



The End

• Thank you for your attention!

• Do you have any questions?
• We are hiring: careers@memgraph.com

Life of a Distributed Query — Query Execution ѲѰ of ѲѰ



The End

• Thank you for your attention!
• Do you have any questions?

• We are hiring: careers@memgraph.com

Life of a Distributed Query — Query Execution ѲѰ of ѲѰ



The End

• Thank you for your attention!
• Do you have any questions?
• We are hiring: careers@memgraph.com

Life of a Distributed Query — Query Execution ѲѰ of ѲѰ


	About
	OpenCypher Query Language
	Semantic Analysis
	Query Planning and Optimization
	Query Execution

