
TDD is not about
testing

Bad name for good technique ...

#CodeBEAMSTO

GPad

Born to be a developer with an interest in distributed system.

I have developed with many languages like C++, C#, js and ruby. I had fallen in
love with functional programming, especially with elixir, erlang.

● Twitter: https://twitter.com/gpad619
● Github: https://github.com/gpad/
● Medium: https://medium.com/@gpad

CTO & founder of coders51

https://twitter.com/gpad619
https://github.com/gpad/
https://medium.com/@gpad

#CodeBEAMSTO

Schedule
What is TDD?

Why TDD?

TDD is not (only) Unit Testing

TDD in OOP vs FP

Examples

#CodeBEAMSTO

What is TDD - History
Wikipedia - TDD

Wikipedia - Extreme Programming

Quora - Why does Kent Beck rediscover TDD

http://wiki.c2.com/?TestingFramework

Wikipedia - C2 System

https://en.wikipedia.org/wiki/Test-driven_development#External_links
https://en.wikipedia.org/wiki/Extreme_programming
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery
http://wiki.c2.com/?TestingFramework
https://en.wikipedia.org/wiki/Chrysler_Comprehensive_Compensation_System

#CodeBEAMSTO

What is TDD - History
The C3 project started in 1993 [...]. Smalltalk development was initiated in 1994.
[...] In 1996 Kent Beck was hired [...]; at this point the system had not printed a
single paycheck.

In March 1996 the development team estimated the system would be ready to go
into production around one year later.

In 1997 the development team adopted a way of working which is now formalized
as Extreme Programming.

The one-year delivery target was nearly achieved, with actual delivery being a
couple of months late;

#CodeBEAMSTO

What is TDD - History
It was developed by Grady Booch, Ivar Jacobson
and James Rumbaugh at Rational Software in
1994–1995, with further development led by them
through 1996.

In 1997 UML was adopted as a standard by the
Object Management Group (OMG) [...].

In 2005 UML was also published by the International Organization for
Standardization (ISO) as an approved ISO standard. Since then the standard
has been periodically revised to cover the latest revision of UML.

#CodeBEAMSTO

What is TDD - History

#CodeBEAMSTO

What is TDD - History
Form Wikipedia:

Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: requirements are turned into very
specific test cases, then the software is improved to pass the new tests, only.

This is opposed to software development that allows software to be added that is
not proven to meet requirements.

American software engineer Kent Beck, who is credited with having developed or
"rediscovered" the technique, stated in 2003 that TDD encourages simple designs
and inspires confidence.

https://en.wikipedia.org/wiki/Test-driven_development

#CodeBEAMSTO

What is TDD

#CodeBEAMSTO

What is TDD
1. Add a test
2. Run all tests and see if the new test

fails (RED)
3. Write the code (Only to make the

test pass!!!)
4. Run tests
5. Refactor code
6. Repeat

Why TDD

#CodeBEAMSTO

Why TDD
Less bugs

I like it …

I feel more comfortable …

…

Helps to create a “GOOD” design

#CodeBEAMSTO

Why TDD
TDD changes the point of view.

Forces the developer to think about the “behaviour” of the code.

Talks to the developer showing what are the “difficult points” of the code.

If the tests talk, we should listen them … (often we ignore them).

#CodeBEAMSTO

Listen the test
defmodule MyModule do
 def postpone(dest, msg) do
 msg = encapsulate(msg)
 time = get_delay()
 Process.send_after(dest, msg, time)
 end

 defp encapsulate(msg) do
 {:postone, msg}
 end

 def get_delay() do
 Application.get_env(:postone, :time, 10000)
 end
end

#CodeBEAMSTO

Listen the test
defmodule MyModuleTest do
 use ExUnit.Case

 test "postone right" do
 MyModule.postpone(self(), "ciao")

 assert_receive {:postone, "ciao"}, 20_000
 end
end

The name doesn’t mean anything

Our test is sloooow ...

#CodeBEAMSTO

Listen the test - other smells ...
defmodule MyModuleTest do
 use ExUnit.Case

 test "postpone right" do
 Application.put_env(:postone, :time, 1)
 MyModule.postpone(self(), "ciao")

 assert_receive {:postone, "ciao"}
 end

 test "postpone for right time ..." do
 MyModule.postpone(self(), "ciao")

 refute_receive {:postone, "ciao"}, 5000
 end
end

Change GLOBAL value!!!!

No More isolated !!!

#CodeBEAMSTO

Listen the test
defmodule MyModuleTest do
 use ExUnit.Case, async: false
 import Mock

 test "postone right with mock" do
 with_mock(Process, [:passthrough], send_after: fn dst, msg, _ -> send(dst, msg) end) do
 MyModule.postpone(self(), "ciao")

 assert_receive {:postone, msg}
 end
 end
end

No more concurrency

Why this ?!?!

Still doesn’t work ...

This is not our module

#CodeBEAMSTO

Listen the test
It isn’t a tool problem.

It’s a design problem …

What is telling (screaming) the test?

#CodeBEAMSTO

Listen the test
defmodule MyModuleTest do
 use ExUnit.Case

 test "postone right" do
 MyModule.postpone(self(), "ciao")

 assert_receive {:postone, "ciao"}, 20_000
 end
end

The name doesn’t mean anything

Our test is sloooow ...

#CodeBEAMSTO

Listen the test
defmodule MyModuleTest do
 use ExUnit.Case

 test "postone/1 send delayed message" do
 MyModule.postpone(self(), "ciao", 0)

 assert_receive {:postone, "ciao"}
 end
end

Describe the behaviour of method

We can manage the behaviour of our function ...

#CodeBEAMSTO

Listen the test
defmodule MyModule do
 @postpone_time Application.get_env(:postone, :time, 10000)

 def postpone(dest, msg, time \\ @postpone_time) do
 msg = encapsulate(msg)
 Process.send_after(dest, msg, time)
 end

 defp encapsulate(msg) do
 {:postone, msg}
 end
end

Can we do better?!?

TDD doesn’t mean Unit Testing ...

#CodeBEAMSTO

Type of tests
End to End tests - Tests that work on the entire stack.

Integration Test - Tests that work on some parts of the application.

Unit Test - Tests that work on a single “module/function”.

Why is it important to know which type of test we are writing?

Because we get different feedbacks from different types of test.

#CodeBEAMSTO

Type of tests

#CodeBEAMSTO

Cycle of TDD ...
1. Add a test
2. Run all tests and see if the new

test fails (RED)
3. Write the code
4. Run tests
5. Refactor code
6. Repeat

#CodeBEAMSTO

Cycle of TDD ...

#CodeBEAMSTO

End To End Test or Acceptance Test
This type of test exercises the entire stack of the application.

It remains RED until the feature is completed.

Don’t write too much E2E.

They are slow and fragile.

Where is the design?

#CodeBEAMSTO

How application is done (or should be)

#CodeBEAMSTO

How application is done (or should be)
Try to create a E2E test that interacts
with system from the external.

If it’s “impossible” try to move a little
inside skipping the adapter.

Are we creating a Java application?

#CodeBEAMSTO

OOP vs FP
OOP - We pass object reference to Object under test!

FP - We have immutability!

Elixir - We have almost always immutability!

Immutability means purity.

Purity means no side effects.

#CodeBEAMSTO

OOP vs FP
What are the instructions that make the code impure?

Everytime we make an I/O operation we aren’t pure.

Everytime we send a message.

Everytime we use the time.

#CodeBEAMSTO

OOP vs FP
What’s happen when we lost our purity?

We depend to something “external”.

We are doing at least integration test.

So ...

#CodeBEAMSTO

OOP vs FP
In OOP is quite common use mock to mock dependencies of objects and to
define the relationship between them.

In FP (IMHO) mock should be used to manage the impurity of our language.

Mock

#CodeBEAMSTO

When to use Mock?
When we want to isolate one part from another.

Classic example HTTP connections.

We have to make some HTTP calls and manipulate the results in some ways.

How can we do it?

#CodeBEAMSTO

When to use Mock?
DON’T TRY THIS AT HOME!!

test "create data via https", %{id: id} do
 response = create_response(201, %{key: "value"})
 with_mock HTTPoison, [:passthrough], post: fn @url, _, _, _ -> {:ok, response} end do

 {:ok, %{res: value}} = MyModule.execute(id)

 assert value == "value"
 assert called(HTTPoison.post(@url, %{id: id}, :_, :_))
 end
end

#CodeBEAMSTO

When to use Mock?
Better solution

test "create data via https", %{id: id} do
 with_mock RemoteData, create: fn %{id: id} -> {:ok, %{key: "value"}} end do

 {:ok, %{res: "value"}} = MyModule.execute(id)

 assert called(RemoteData.create(%{id: id}))
 end
end”

Our module

More domain related function ...

#CodeBEAMSTO

When to use Mock?
We are at the boundaries of our
system and we can use the mock to
shape the behavior between the
CORE and the adapter that talks with
the external system.

It’s the CORE that choose the shape
of the data and how the functions
should be done.

#CodeBEAMSTO

When to use Mock? - I/0
defmodule MyCoreModule do

 def store_valid_data(data, limit, delta) do
 content = data
 |> Enum.filter(fn %{value: value} -> around(value, limit, delta) end)
 |> Enum.map(fn %{value: v, comment: c} -> "value: #{v} - comment: #{c}" end)
 |> Enum.join("\n")

 :ok = File.write(@path, content)
 end
end

#CodeBEAMSTO

When to use Mock? - I/0
defmodule MyCoreModule do

 def store_valid_data(data, limit, delta, storage \\ FileStorage) do
 content = data
 |> Enum.filter(fn %{value: value} -> around(value, limit, delta) end)
 |> Enum.map(fn %{value: v, comment: c} -> "value: #{v} - comment: #{c}" end)
 |> Enum.join("\n")

 :ok = storage.store(content)
 end
end

#CodeBEAMSTO

When to use Mock? - I/O
defmodule MyCoreModuleTest do
 use ExUnit.Case

 defmodule MockStorage do
 def store(content) do
 send(self(), {:store, content})
 :ok
 end
 end

test "store only valid data", %{limit: limit, delta: delta} do
 valid = valid_data(limit, delta)
 invalid = invalid_data(limit, delta)
 content = "value: #{valid.value} - comment: #{valid.comment}"
 MyCoreModule.store_valid_data(
 [valid, invalid], limit, delta, MockStorage)

 assert_received {:store, ^content}
end

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModule do
 def create_question(opts) do
 %{
 question: Keyword.get(opts, :q, "Sense of life?"),
 response: Keyword.get(opts, :a, 42),
 created_at: DateTime.utc_now()
 }
 end
end

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModuleTest do
 use ExUnit.Case

 test "create questions" do
 assert MyCoreModule.create_question([]) == %{
 question: "Sense of life?",
 response: 42,
 created_at: DateTime.utc_now()
 }
 end
end

#CodeBEAMSTO

When to use Mock? - Time

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModule do
 def create_question(opts, clock \\ Clock) do
 %{
 question: Keyword.get(opts, :q, "Sense of life?"),
 response: Keyword.get(opts, :a, 42),
 created_at: clock.utc_now()
 }
 end
end

#CodeBEAMSTO

When to use Mock? - Time
test "create default questions" do
 assert MyCoreModule.create_question([], MockClock) == %{
 question: "Sense of life?",
 response: 42,
 created_at: MockClock.utc_now()
 }
 end

#CodeBEAMSTO

When to use Mock? - Time

#CodeBEAMSTO

When to use Mock? - Time
How to manage a periodic task?

Divide et impera.

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModuleTest do
 use ExUnit.Case

 test "change state at every tick" do
 prev = MyCoreModule.new()
 next = MyCoreModule.tick(prev)
 assert next.value == prev.value + 1
 end
end

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModuleServerTest do
 use ExUnit.Case

 test "call tick when receive tick" do
 with_mock(MyCoreModule, tick: fn s -> s end) do
 pid = MyCoreModuleServer.start_link()

 send(pid, :tick)

 eventually_assert(fn -> assert_called(MyCoreModule.tick(:_)) end)
 end
 end
end

#CodeBEAMSTO

When to use Mock? - Time
defmodule MyCoreModuleServer do
 use GenServer

 def init([other_args, duration]) do
 state = calc_state(other_args, duration)
 Process.send_after(self(), :tick, duration)
 {:ok, state}
 end

 def handle_info(:tick, state) do
 new_core = MyCoreModule.tick(state.core)
 Process.send_after(self(), :tick, state.duration)
 {:noreply, %{state | core: new_core}}
 end

#CodeBEAMSTO

WHERE to use Mock?
Use the mock at the external of
CORE/Domain (adapter).

Try to keep the CORE pure so we
don’t have “side-effect” inside it.

#CodeBEAMSTO

When not to use Mock?
Don’t use mock on Module that don’t own.

test "create data via https", %{id: id} do
 response = create_response(201, %{key: "value"})
 with_mock HTTPoison, [:passthrough], post: fn @url, _, _, _ -> {:ok, response} end do

 {:ok, %{res: value}} = MyModule.execute(id)

 assert value == "value"
 assert called(HTTPoison.post(@url, %{id: id}, :_, :_))
 end
end

#CodeBEAMSTO

When not to use Mock?
Don’t use mock because otherwise “you aren’t doing unit test”

defmodule MyCoreModule1 do
 def execute(data) do
 data
 |> Enum.map(fn -> {data.id, data.value, data} end)
 |> MyCoreModule2.filter(data.filter)
 |> MyCoreModule3.map(data.type)
 end
end

#CodeBEAMSTO

When not to use Mock?
defmodule MyCoreModule1Test do
 use ExUnit.Case

 test "execute filter and map data" do
 with_mocks [
 {MyCoreModule2, [], filter: fn data, _level -> data end},
 {MyCoreModule3, [], map: fn data, _type -> data end}
] do
 MyCoreModule1.execute([%{id: 12, value: 1, filter: 10, type: OtherModule}])
 assert called(MyCoreModule2.filter(:_, :_))
 assert called(MyCoreModule3.map(:_, :_))
 end
 end
end

#CodeBEAMSTO

TDD - Mix Everything together
What is the first test to do?

We could start from an E2E test to enter inside our application.

Create at least one E2E for every User Story.

Don’t create too much E2E they are slow and fragile.

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.EndToEnd.GamesTest do
 use MayApp.ConnCase, async: false

 describe "As Logged User" do
 test "I would see my active games", %{conn: conn} do
 {:ok, game} = create_active_game()
 conn = get(conn, "/api/games")
 assert json_response(conn, 200) == expected_response_for(game)
 end

 ...

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.EndToEnd.GamesTest do
 use MayApp.ConnCase, async: false

 describe "As Logged User" do
 ...
 test "I would create a new games", %{conn: conn} do
 conn = post(conn, "/api/games")
 res = json_response(conn, 200)
 assert %{"id" => _, "status" => "active"} = res
 end
 end
end

#CodeBEAMSTO

TDD - Mix Everything together
The E2E remains RED until all the cycle is completed.

After that we have written the E2E we go inside the CORE and start to create
some unit tests.

The Unit Test should be PURE.

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.MyCoreModuleTest do
 use ExUnit.Case

 test "at every tick the count is incremented" do
 state = MyCoreModule.new(MockClock)

 new_state = MyCoreModule.tick(state)

 assert new_state.count == state.count + 1
 assert new_state.last_updated_at == MockClock.utc_now()
 end

 ...
end

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.MyCoreModuleTest do
 use ExUnit.Case

 test "at every tick the count is incremented" do
 state = MyCoreModule.new()

 new_state = MyCoreModule.tick(state, now)

 assert new_state.count == state.count + 1
 assert new_state.last_updated_at == now
 end

 ...
end

#CodeBEAMSTO

TDD - Mix Everything together
After we have written the unit tests for the CORE we could move to the
boundaries where we should write tests for the adapter parts.

The test for storage part should be written using the DB. IMHO they are more
integration than unit.

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.GameServerTest do
 use ExUnit.Case, async: false

 test "at every tick the state is changed" do
 id = 123
 game = %{id: id, state: :ready}
 with_mocks [{GameStorage, load: fn ^id -> game end},
 {MyCoreModule, tick: fn ^game, _ -> game end}] do
 {:ok, pid} = GameServer.start_link(id, tick: :manual)
 GameServer.tick(pid)
 assert_called(MyCoreModule.tick(game, :_))
 end
end

#CodeBEAMSTO

TDD - Mix Everything together
defmodule MayApp.GameServerTest do
 use ExUnit.Case, async: false

 test "at every tick the new game is stored" do
 game = Game.new()
 GameStorage.save_game(game)
 {:ok, pid} = GameServer.start_link(game.id, tick: :manual)

 GameServer.tick(pid)

 eventually_assert(fn ->
 new_game = GameStorage.load(game.id)
 assert new_game.count == game.count + 1
 end)
 end
end

#CodeBEAMSTO

TDD - Mix Everything together
Writing these tests BEFORE the implementation we are doing DESIGN.

We are shaping the production code.

The code became more “composable”.

It’s more clear where are side effects (I/O, Time).

It’s more clear what are the different parts of our applications.

#CodeBEAMSTO

Recap
TDD is not a Silver Bullet.

TDD doesn’t give us a “good” design if we are not able to do it.

TDD can help us to find some issues in our design.

Listen the test, often they are screaming in pain ...

#CodeBEAMSTO

Reference
GOOS

Clean Architecture

Unit Test in Elixir

Mocks and explicit contracts

Property based testing with PropEr, Erlang and Elixir

Testing Elixir

https://www.amazon.com/Growing-Object-Oriented-Software-Guided-Tests/dp/0321503627/ref=sr_1_fkmrnull_1?__mk_it_IT=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=VJ6VRGG0SGDM&keywords=growing+object-oriented+software+guided+by+tests&qid=1557597475&s=gateway&sprefix=groowing+obje%2Caps%2C202&sr=8-1-fkmrnull
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://devonestes.herokuapp.com/unit-tests-in-elixir-part-1
http://blog.plataformatec.com.br/2015/10/mocks-and-explicit-contracts/
https://pragprog.com/book/fhproper/property-based-testing-with-proper-erlang-and-elixir
https://twitter.com/whatyouhide/status/1125792854205456385

End - Thanks !!!

