Playing with Lambda Calculus

Bernardo Amorim

Alonzo Church

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY .

By Avnonzo CHurcH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively
calculable function f of n positive integers, such that f(z,, 2, - -, 25) =22
is a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving z,, @, - * *, &4 a8 free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, z, such that z» 4 y™ = 2", For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z, y, 2, such that z® - y" = 2", Clearly
the condition that the function f be effectively calculable is an essential part
of the problem, since without it the problem becomes trivial.

Another example of a problem of this class is, for instance, the problem
of topology, to find a complete set of effectively calculable invariants of closed
three-dimensional simplicial manifolds under homeomorphisms., This problem
can be interpreted as a problem of elementary number theory in view of the
fact that topological complexes are representable by matrices of incidence.
In fact, as is well known, the property of a set of incidence matrices that it
represent a closed three-dimensional manifold, and the property of two sets
of incidence matrices that they represent homeomorphic complexes, can both
be described in purely number-theoretic terms. If we enumerate, in a straight-
forward way, the sets of incidence matrices which represent closed three-
dimensional manifolds, it will then be immediately provable that the problem
under consideration (to find a complete set of effectively calculable invariants
of closed three-dimensional manifolds) is equivalent to the problem, to find
an effectively calculable function f of positive integers, such that f(m,n) is
equal to 2 if and only if the m-th set of incidence matrices and the n-th set
of incidence matrices in the enumeration represent homeomorphic complexes.

Other examples will readily occur to the reader.

! Presented to the American Mathematical Society, April 18, 1835,
*The selection of the particular positive integer 2 instead of some other is, of
course, accidental and non-essential.

230 A. M. Turivg [Nov. 12,

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TuriNG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ‘“computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computabhle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment, as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine,

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, e, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelt. These results

t Godel, *“Uber formal unentscheidhare Sitze der Principia Mathematica und ver-
wandter Systeme, 1", Monatshefre Math, Phys., 38 (1931), 173-198.

AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY .

By Avnonzo CHurcH.

1. Introduction. There is a class of problems of elementary number
theory which can be stated in the form that it is required to find an effectively
calculable function f of n positive integers, such that f(z,, 2, - -, 25) =22
is a necessary and sufficient condition for the truth of a certain proposition of
elementary number theory involving z,, @5, - * -, s a8 free variables.

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive
integers z, y, z, such that z» 4 y™ = 2®. For this may be interpreted, required
to find an effectively calculable function f, such that f(n) is equal to 2 if and
only if there exist positive integers z, y, 2, such that z® - y" = 2", Clearly
the condition that the function f be effectively calculable is an essential part
of the problem, since without it the problem becomes trivial.

Another example of a problem of this class is, for instance, the problem
of topology, to find a complete set of effectively calculable invariants of closed
three-dimensional simplicial manifolds under homeomorphisms., This problem
can be interpreted as a problem of elementary number theory in view of the
fact that topological complexes are representable by matrices of incidence.
In fact, as is well known, the property of a set of incidence matrices that it
represent a closed three-dimensional manifold, and the property of two sets
of incidence matrices that they represent homeomorphic complexes, can both
be described in purely number-theoretic terms. If we enumerate, in a straight-
forward way, the sets of incidence matrices which represent closed three-
dimensional manifolds, it will then be immediately provable that the problem
under consideration (to find a complete set of effectively calculable invariants
of closed three-dimensional manifolds) is equivalent to the problem, to find
an effectively calculable function f of positive integers, such that f(m,n) is
equal to 2 if and only if the m-th set of incidence matrices and the n-th set
of incidence matrices in the enumeration represent homeomorphic complexes.

Other examples will readily occur to the reader.

! Presented to the American Mathematical Society, April 18, 1835,
*The selection of the particular positive integer 2 instead of some other is, of
course, accidental and non-essential.

345

Turing Completeness
and the Church-Turing thesis

A-calculus

A-calculus

e Formalism that defines computability

A-calculus

e Formalism that defines computability

e Based on simple functions that:

A-calculus

e Formalism that defines computability
e Based on simple functions that:

e Are anonymous

A-calculus

e Formalism that defines computability
e Based on simple functions that:
e Are anonymous

e Are curried (1 argument function only)

A-calculus

Formalism that defines computability
Based on simple functions that:

e Are anonymous

e Are curried (1 argument function only)

Defines a simple syntax for defining a Lambda Term

A-calculus syntax

Constructor Lambda
Variable X, \V, my var
Abstraction Ax. BODY

Application A B

Application is left associative
abc=(ab)c

abc#a(bc

NN AR EDVEINVAD

AX. X

AX. X X

AX. X X X

(Ax. x) (Ax. x)

Af. Ax. X

Af. Ax. £ X

A. Ax. £ (£ (£ (£ x)))

Lambda Calculus in Elixir

Programming Challenge
Weird sub-set of Elixir

Weird sub-set of Elixir

Valid terms can be:

Weird sub-set of Elixir

Valid terms can be:

e Variable names such as x, y,ormy variable

Weird sub-set of Elixir

Valid terms can be:

e Variable names such as x, y,ormy variable

e Anonymous functions definitions like fn x -> BODY end
where BODY is also a valid term.

Weird sub-set of Elixir

Valid terms can be:

e Variable names such as x, y,ormy variable

e Anonymous functions definitions like fn x -> BODY end
where BODY is also a valid term.

* Application of functions, like A. (B) where both A and B are valid
terms.

Weird sub-set of Elixir

fn x -> x end

fn x -> x.(x) end

fn x -> x.(x).(x) end

(fn X -> x end).(fn x -> x end)
fn ->fn x -> x end end

fn £ -> fn x -> £.(x) end end
ftnft ->ftnx ->ft.(£.(£.(£.(x)))) end end

Remember this?

AX. X

AX. X X

AX. X X X

(Ax. x) (Ax. x)

Af. Ax. X

Af. Ax. £ X

A. Ax. £ (f (£ (£ x)))

Weird sub-set of Elixir

This is Turing-Complete

Here is a factorial function.

(fn £ -> (fn x -> x.(x) end).(fn x -> £.(

fny -> x.(x).(y) end) end) end).(fn fact ->

fnn ->((fn b -> fn tf -> fn ff -> b.(tf).(£ff).(b)
end end end).((fnn ->n.(ftn _ -> tn _ -> tn £ ->

f end end end).(fn t -> fn _ -> t end end) end).
(n)).(tn _ -> ftn £ -> tn x -> £.(x) end end end).
(fn _ -> (fn n -> fnm -> ftn £ -> fn x -> n.(m.(£))
.(X) end end end end).(n).(fact.((fn n -> tn £ ->
fn x -=>n.(fn g -> fn h -> h.(g.(f)) end end).

(fIn _ -> x end).(fn u -> u end) end end end).(n)))

end) end end)

iex(5)> fact = (fn £ -> (fn x -> x.(x) end).(fn x -> £f.(fn vy
-> X.(x).(y) end) end) end).(fn fact -> fn n -> (fn b -> fn
tf -> tn ff -> b.(tf).(f£f).(b) end end end).((fn n -> n.(Lfn

-> fn -> fn £ -> £ end end end).(fn t -> £fn -> t end

end) end).(n)).(fn _ -> ftn £ -> ftn x -> f£.(x) end end end).
(fn _ -> (fnn -> fnm -> fn £ -> fn x -> n.(m.(£)).(x) end
end end end).(n).(fact.((fn n -> tn £ -> ftn x -> n.(fn g ->
fn h -> h.(g.(f)) end end).(fn _ -> x end).(fn u -> u end)

end end end).(n))) end) end end)

#Function</.91303405/1 in :erl _eval.expr/5>

Encoding and Decoding

5

> number to lambda. ()
> fact.()

> lambda_to_number. ()

Encoding and Decoding

iex(6)> 5 [>

...(6)> number _to lambda.() |>
...(6)> fact.() |>

...(6)> lambda_to number. ()
120

The simplest A-term
The identity function

e AX.

The simplest A-term
The identity function

The simplest A-term
The identity function

e AX. X

e fn X -> X end

The simplest A-term

iex(1l)> id = ftn x -> x end
#Function</.913%03405/1 in :erl eval.expr/5>
iex(2)> id.(true)

true

Boolean Encoding in Lambda Terms

That is: encode True and False

P.S.: There are infinite ways of doing this

What are booleans used for?

Branching

Pick one of two paths

277

Athen. Aelse. 77?77

True: Athen. Aelse. then

False: Athen. Aelse. else

Church Booleans

In Elixir

True
fn then path -> fn -> then _path end end

False
fn -> fn false path -> false path end end

iex(3)> true! = ftn t -> fn -> t end end

#Function</.91303405/1 in :erl eval.expr/5>
iex(4)> false! = fn -> fn £ -> £ end end

#Function</.91303405/1 in :erl eval.expr/5>
iex(5)> true!.("This if true").("This 1if false")
"This 1f true"

iex(6)> false!.("This 1f true").("This 1f false")
"This 1f false"

#Function</.91303405/1 in :erl eval.expr/5>

#Function</.91303405/1 in :erl eval.expr/5>

Decoding Booleans

Need a way to check the result

Let's cheat

We can apply non-lambda terms to our lambda term

Let's cheat

We can apply non-lambda terms to our lambda term

encoded boolean.(true).(false)

iex(/)> lambda to bool fn b -> b.(true).(false) end
#Function</.913035405/1 in :erl eval.expr/5>

iex(8)> lambda to bool.(true!)

true

iex(9)> lambda to bool.(false!l)

false

Operations on Booleans

Negation Function

Negation Function

a not a

true false

false true

Negation Function

Aa. 777

Negation Function
Aa. a ?WHEN_TRUE? ?WHEN FALSE?

Negation Function
Aa. a FALSE TRUE

Negation Function

fna ->
a.(false!).(true!)
end

Negation Function

iex(10)> not! = fn a -> a.(false!).(true!) end
#Function</.913%03405/1 in :erl eval.expr/5>
iex(1l1)> true! |> not!.() |> lambda to bool.()
false

iex(12)> false! [> not!.() |[> lambda_to_bool.()
true

And Function

And Function

a b and a b
true true true
true false false
false true false
false false false

And Function
Aa. Ab. ??7?

And Function

Aa. Ab. a ??7? 7?77

And Function
Aa. Ab. a ??? FALSE

And Function
Aa. Ab. a b FALSE

And Function

fna ->fn b ->
a.(b).(falsel)
end end

And Function

iex(1l3)> and! = ftn a -> fn b -> a.(b).(false!) end end
#Function</.913%03405/1 in :erl eval.expr/5>

iex(14)> and!.(true!).(true!) |[> lambda _to bool.()
true

iex(15)> and!.(true!).(false!) |> lambda to bool.()
false

iex(1l6)> and!.(false!l).(true!) |> lambda to bool. ()
false

iex(1l/)> and!.(falsel).(false!) |> lambda to bool.()
false

Other Logic Gates

NAND Logic

With not and and you can implement all other gates

Encoding Natural Numbers

That is: encode 0, 1, 2, ...

P.S.: There are also infinite ways of doing this

What natural numbers are used for?

Counting things

Church Numerals

Count the number of times a function is applied to a given input

N
Af. Ax. F APPLIED TO X N TIMES

Number Encoding
0 Af. AX.
1 Af. AX. X
2 AE. AX. (f x)
3 A . AX. (f (£ x))
4 M. Ax. £ (£ (£ (£ x)))

Constructing Natural Numbers

Constructing Natural Numbers

e We need zero

Constructing Natural Numbers

e We need zero

 And a way to get N+1 given N (successor)

Zero
Af. AX. X

ero

fn £ -> fn x -> x end end

Successor Function

An. 27?7

Successor function
An. (Af. Ax. ?777?)

Apply £ to x N+1 times

Applying N times

n £ X

Successor function
An. (Af. Ax. ??2?7 (n £ X))

Successor function
An. (Af. Ax. £ (n £ x))

Successor function
An. Af. Ax. £ (n £ x)

Successor Function

fnn ->fn £ -> fn x ->
£f.(
n.(f).(x)
)

end end end

ex(18)> zero = fn f -> fn x -> x end end

#Function</.913034035/1 in :erl eval.expr/5>

iex(19)> succ = fn n -> fn £ -> fn x -> £.(n.(£).(x)) end end end
#Function</7.913034035/1 in :erl eval.expr/5>

iex(20)> one = succ.(zero)

#Function</7.913034035/1 in :erl eval.expr/5>

iex(21)> two = succ.(succ.(zero))

#Function</7.913034035/1 in :erl eval.expr/5>

#Function</.91303405/1 in :erl eval.expr/5>

#Function</7.91303403/1 in :erl eval.expr/5>

#Function</.91303403/1 in :erl eval.expr/5>

Elixir Numbers & Church Numerals

Elixir Numbers & Church Numerals

Lambda to number = fn n ->
n. # Do N times
(&(&1 + 1)). # Adds 1
(0) # Start with 0O
end

number to lambda = fn n ->

©..n |> Enum.drop(1l) |> Enum.reduce(zero, fn
end

, X -> succ.(x) end)

iex(22)> lambda to number = fn n -> n.(&&l + 1)).(0) end
#Function<7.91303403/1 in :erl eval.expr/5>

iex(23)> number to lambda = fn n ->

...(23)> ©..n |[> Enum.drop(1l) |> Enum.reduce(zero, fn , x -> succ.(x) end)
...(23)> end

#Function</.913034035/1 in :.erl _eval.expr/5>

iex(24)> lambda_ to _number.(zero)

0

iex(25)> lambda_to_number.(one)

1

iex(26)> lambda_to_number.(two)

2

iex(2/7)> lambda to number.(succ.(two))

3

iex(28)> 10 |> number to lambda.() |> succ.() |> lambda to number.()
11

Addition

Addition

A

SUCC A

SUCC (SUCC A)

SUCC (SUCC (SUCC A))

SUCC applied B times to A

Addition
Aa. Ab. ?SUCC APPLIED B TIMES TO A?

Addition
Aa. Ab. b ?F? a

Addition
Aa. Ab. b SUCC a

Addition

fna ->fn b ->
b.(succ).(a)
end end

iex(29)> add = fn a -> fn b -> b.(succ).(a) end end
#Function</.913%303405/1 in :erl eval.expr/5>

iex(50)> zero |[> add.(one).() |> lambda_to number. ()
1

iex(51)> one |> add.(one).() |> lambda to number. ()
2
iex(52)> two |> add.(two).() |> lambda to number. ()
4

Multiplication

Multiplication

0

9 + A

9 + A+ A

9+ A+ A+ A

A added to @ B times

Multiplication
Aa. Ab. ?A ADDED TO ZERO B TIMES?

Multiplication
Aa. Ab. b ?ADD A? ZERO

Multiplication
Aa. Ab. b (Ax. ADD a x) ZERO

Multiplication
Aa. Ab. b (ADD a) ZERO

fna->fnb ->
b.(add.(a)).(zero)
end end

iex(33)> mul = fn a -> fn b -> b.(add.(a)).(zero) end end
#Function</.913034035/1 1in :.:erl eval.expr/5>

iex(34)> mul.

...(%34)> (number to lambda.(5)).

...(34)> (number _to lambda.(10)) |> lambda to number.()
50

What's next?

Predecessor Function

Predecessor Function
An. Af. Ax. n (Ag. Ah. h (g £)) (Au. x) (Au. u)

Recursion

Fixed Point Combinators

That's all, folks.

(for now)

github.com/bamorim/elixir-lambda-talk

https://github.com/bamorim/elixir-lambda-talk

