
Decomposing
Container Tools
About Swiss Army Knives and Containers

Valentin Rothberg
rothberg@redhat.co
m
@vlntnrthbrg

Who has been working with
containers?

Please raise your hand.

Why are we using containers?

● An easy and cheap way to ship and deploy applications

● Scalability

● “Build once, run everywhere”
○ Portability
○ Reproducibility

○ Flexibility

● Great tooling and support

● Huge investments from the industry

Virtualization vs. Containers

The Life Cycle of a Container

Build Run OrchestrateDistribute

Docker can do all of these things

Red Hat’s Containers Philosophy

● No one-size-fits-all solution

● Have use-case dedicated and specialized tools

○ Open standards
○ Open development
○ Open source

● Interoperability

● Reduced scope

● Allows for innovation

Building Containers

Buildah ABC

● Name originates from Dan Walsh’s Bostonian accent

● Buildah’s functionality goes beyond Dockerfiles

● Meant to be used as a low-level coreutils for building images

● Other tools should be able to embed buildah

● Developed at github.com/containers/buildah

Buildah ABC

● Supports Dockerfiles
○ $ buildah build-using-dockerfile -f Dockerfile .

○ Or shorter via $ buildah bud ...

● Can run rootless

● Daemon-less architecture

● Focus on OCI standards and open development

● Exposes a golang library

● Easy to integrate into K8s pipelines

○ Official images available at quay.io/buildah/stable:latest

Does Buildah have a scripting
language?

Perhaps Buildahfile?

BASH - Buildah’s scripting language

Decomposing Dockerfiles

Why a dedicated building tool?

● Dedicated CLI without the fear of cluttering

● Use cases beyond Dockerfiles

● Cleaner and smaller code base due to limited focus

● Specialisation

○ A Buildah container is less restricted than a Podman container

● Independent release cycles

○ New features reach users faster

● Innovation

○ Not being blocked by non-building requirements

Distributing Containers

Skopeo ABC

● Used in many non-Docker pipelines to distribute images (e.g., Open Build

Service)

● Developed at github.com/containers/skopeo

● Does not run as a daemon and does not require root privileges

● Can copy single images and lists of images (manifest lists)

● Supports different image formats

○ Docker v2s1 & v2s1

○ Open-Container Initiative (OCI)

● 23 MB binary size vs ~210 MB of Docker (Fedora 31)

○ A comparatively small “army knife”

Skopeo - born by the desire to inspect remote images

Skopeo - Supported Transports

● Containers-storage
○ Local container storage (e.g., overlay or btrfs)

● Directory
○ Non-standardized format to “explode” an image to a specified path

● Docker
○ Image on a registry (e.g., docker.io/library/fedora:latest)
○ Archive in the docker-save(1) format
○ From a local docker-daemon

● OCI
○ As specified by the OCI image spec
○ Can also be compressed as a tar(1) archive

Skopeo - Registries Configuration

● /etc/containers/registries.conf

● Unqualified search registries - pull fedora

● Namespaced registry settings

○ Insecure (without TLS verification)

○ Blocked (any attempt to contact the server is blocked)

○ Mirrors (will be contact prior to the registry)

● Shared by all tools in this talk

Running Containers

● Container engine for managing containers and pods

● Pod manager

● CLI is based on Docker

○ De facto standard CLI for managing containers

○ Allows for an easier transition of users and scripts

● Fastest migration

○ alias docker=podman

What is Podman?

Enough said, let’s have a look!

No Daemon. No Root.

Podman Mount/Unmount

Managing Container Images Is Tough

$ podman images -q | wc -l
182

● The local image storage can quickly become a mess

○ Development, testing, and everything’s containerized

● Which images does an image use?

○ Do I really need them? Can I rebase my application on something less complex?

● Which image is required by other images?

Podman Image Tree - Which layers does X use?

Podman Image Tree - Which layers require X?

Container Runlabel - Let’s get straight to it!

“Runlabel can execute any command on the host”

Podman Generate Systemd

What is .../userdata/conmon.pid?

● Conmon is the container monitor and sits between Podman and the runtime

● Provides a socket for attaching to the container

● Streams to a log file or the systemd journal

● Keeps file descriptors and ports open

● Records container’s exit time and code

● It’s actually a daemon to prevent Podman from being one

○ But a really small one (i.e., 76K)

Systemd in Containers

● Many packages need it but it wasn’t supported for a long while

○ Workarounds and hand-written init scripts

● Systemd OCI hook for Docker

● Podman has built-in support if --systemd or command[0] == “systemd” or

“init”

○ Mounts /run, /run/lock, /tmp, /var/log/journal as tmpfs

○ Bind mounts /sys/fs/cgroup

● No workarounds needed anymore, just install the packages

Podman generate kube

Podman Checkpoint & Restore

Divyansh Kamboj

Valentin Rothberg Dan Walsh

Google Summer of Code Project 2019

Generate Seccomp Profiles with Podman and eBPF

● Seccomp is a Linux security mechanism to filter syscalls

● Containers commonly use a default seccomp profile

○ Allows more than 300 of the 435 syscalls on Linux 5.3 x86_64

○ Average container uses 40 to 70 syscalls (Aqua Sec)

○ ~80% of attack surface reduction

● We use eBPF to trace executed syscalls to generate custom profiles for each

workload

● Please visit podman.io for more information on the GSoC project

Orchestrating Containers

CRI-O

● OCI-based Kubernetes Runtime

○ The only use case is Kubernetes: nothing more nothing less

● CNCF project since April 2019

● Supports all OCI compatible container images
○ Including all older Docker formats

● Supports any container registry

● Supports all OCI container runtimes

● 100+ contributors, 90+ releases, 1500+ per PR

● Collaboration across the industry (Red Hat, SUSE, Intel, IBM, lyft)

The Life Cycle of a Container

Build
Buildah

Run
Podman

Orchestrate
CRI-O

&
Kubernetes

Distribute
Skopeo

● All tools share the same code

○ github.com/containers/image

○ github.com/containers/storage

● Packaged for major Linux distributions

○ RHEL, Fedora, CentOS

○ openSUSE, SLES

○ Ubuntu, Arch Linux, Manjaro, Debian

(soon)

● More information at

○ CRI-O.IO

○ BUILDAH.IO

○ PODMAN.IO

	Decomposing Container Tools
	Who has been working with containers?
	Why are we using containers?
	Virtualization vs. Containers
	The Life Cycle of a Container
	Docker can do all of these things
	Red Hat’s Containers Philosophy
	Building Containers
	Buildah ABC
	Buildah ABC
	Slide 11
	BASH - Buildah’s scripting language
	Decomposing Dockerfiles
	Why a dedicated building tool?
	Distributing Containers
	Skopeo ABC
	Skopeo - born by the desire to inspect remote images
	Skopeo - Supported Transports
	Skopeo - Registries Configuration
	Running Containers
	What is Podman?
	Enough said, let’s have a look!
	No Daemon. No Root.
	Podman Mount/Unmount
	Managing Container Images Is Tough
	Podman Image Tree - Which layers does X use?
	Podman Image Tree - Which layers require X?
	Container Runlabel - Let’s get straight to it!
	“Runlabel can execute any command on the host”
	Podman Generate Systemd
	What is .../userdata/conmon.pid?
	Systemd in Containers
	Podman generate kube
	Podman Checkpoint & Restore
	Google Summer of Code Project 2019
	Generate Seccomp Profiles with Podman and eBPF
	Orchestrating Containers
	CRI-O
	The Life Cycle of a Container
	Slide 40
	Slide 41

