
Implementing Long Running Business Processes

Karolis Petrauskas

Co-founder @ Erisata

CodeBEAM STO 2019

#CodeBEAMSTO 1 / 21

Business Processes
We consider a business process a process, that is
▶ Understood by the business people (avoids technical details);
▶ Of high abstraction level (coordinates interaction between multiple parties);
▶ Crosses several applications (often viewed as a layer of integration platform);
▶ Takes from milliseconds to years to complete.

Business processes are sometimes implemented using BPM solutions.

#CodeBEAMSTO 2 / 21

Business Processes | Example
Users often define business processes as BPMN diagrams.

#CodeBEAMSTO 3 / 21

Business Processes | In Erlang/OTP?
We found no BPM implementation in Erlang/OTP.
Maybe the standard libraries are enough?

BusinessProcesses ∩ ErlangProcesses ̸= ∅?

#CodeBEAMSTO 4 / 21

Business Processes | Support in Erlang/OTP

Erlang/OTP has a number of features making it a good basis for a BPM:
▶ Every separate activity runs as a process, including the business processes.
▶ Finite state machines are sometimes used to implement the business processes,

Erlang/OTP supports that by
▶ gen_statem (previously gen_fsm);
▶ plain_fsm and other.

▶ Fault tolerance, process isolation and high performance.
▶ Test frameworks (especially the Common Test).

#CodeBEAMSTO 5 / 21

Business Processes | What’s Missing in Erlang/OTP
The following seems to be missing for implementing business processes:
▶ Persistence should be done explicitly (sometimes tedious).
▶ Process migration in a cluster (processes are active, and have side effects).
▶ Better support for complicated state machines (a lot of states).

We have implemented a library / framework to handle that:

https://github.com/erisata/eproc_core

Main features it provides:
▶ Automatic persistence on each transition.
▶ A process registry (distributes processes in a cluster).
▶ Support for structured states (nested and orthogonal).
▶ Designed for devs and admins.

#CodeBEAMSTO 6 / 21

https://github.com/erisata/eproc_core

Finite State Machine
A state machine can be described as a relation

States × Events → States × Effects

More detailed descriptions are sometimes useful.

▶ We have added semantics to the state
names in the FSM.

▶ The added semantic is inspired by the
FSMs in the UML.

▶ Structured states allow to manage timers,
keys, state entries in more declarative way.

#CodeBEAMSTO 7 / 21

FSM | Example

The BPMN diagrams rarely maps 1-1 to the state machine.

The FSM notation helps to consider more Event × State combinations – edge cases.

#CodeBEAMSTO 8 / 21

FSM | Nested States

#CodeBEAMSTO 9 / 21

FSM | Nested States – pattern matching
State entry is usually performed in multiple steps, allowing to decouple the states:
handle_state (approved , {entry, submitted }, StateData) ->

{next_state, {approved , implementing }, StateData };

handle_state ({ approved , implementing }, {entry , submitted }, StateData) ->
{ok , StateData };

Event handling by states can be implemented via pattern matching:
▶ Handle all substate state events (state entry is not called in this case):

handle_state ({ approved , _}, {event , recall }, StateData) ->
% It is too late to perform the recall .
{same_state, StateData };

▶ Handle an event particular substate:
handle_state ({ approved , implementing}, {timer , timeout }, StateData) ->

{ final_state , terminated , StateData };

#CodeBEAMSTO 10 / 21

FSM | Nested States – scopes
Nested states are useful to limit scope of timers, they are cancelled automatically
when the FSM exits the specified scope:
handle_state (...) ->

...
ok = eproc_timer :set(step_retry , 1000 , retry , { approved , implementing }),
ok = eproc_timer :set(step_alarm , 10000 , alarm , approved),
...

The same can be done with additional keys, that can be used to locate the process
while being in the specified scope (approved, in this case):
handle_state (...) ->

...
ok = eproc_router : add_key ({ impl_id , ImplId }, approved),
...

Similar concept of keys is used in BPEL, although usually keys have the scope ’_’.
The timer scoped are used extensively in practice.

#CodeBEAMSTO 11 / 21

FSM | Active and Passive States
▶ It appears to be a good practice to separate

active and passive states (especially for error
handling):
▶ Passive states are used to wait for some

external events (or timers).
▶ Active sates are used to perform some actions

(usually involving external resources).
▶ In order to manage errors, retry and giveup

timers are used in active states.
▶ The active state is left when the do action is

successfully completed.
▶ It appears to be a bad practice to perform an

action on a transition (trigger is lost on error).

Passive state:

Active state:

#CodeBEAMSTO 12 / 21

FSM | Active States – separating transactions

▶ Only the timers and the self
event is sent on the state
entry.

▶ The actual operation is
performed on the self event
do.

▶ If the operation was
successful, go to the next
state.

#CodeBEAMSTO 13 / 21

FSM | Active States – handling unexpected errors

▶ On error, be it a crash, or
{error, Reason} returned,
nothing is done usually.

▶ The retry timer will be used
to retry the action.

▶ It will set the next retry timer
and send the second do
action.

▶ The giveup timer can be
used to handle infinite retry
loops.

#CodeBEAMSTO 14 / 21

FSM | Active States – generic handler

The pattern of the active states is very common,
therefore a generic function was defined to handle that.

handle_state (s, {entry, _}, D) ->
% Set the retry and giveup timers,
% send the DO event.
{ok , D};

handle_state (s, {self, act}, D) ->
case do_act (D) of

{ok , ND} -> { next_state , Next , ND}
_ -> { same_state , D}

end;
handle_state (s, {timer, retry }, D) ->

{ next_state , s, D};
handle_state (s, {timer, giveup }, D) ->

{ next_state , Other , D};

handle_state (s, T, D) ->
gen_active_state (s, T, D, #{

do => {act , fun do_act /1} ,
retry => {r, 100 , retry },
giveup => {g, 500 , giveup , Other },
next => Next

});

This approach has made state definitions
more compact, and declarative.

#CodeBEAMSTO 15 / 21

FSM | Orthogonal States
Some states do not have a strict ordering of states, like submitted bellow.

#CodeBEAMSTO 16 / 21

FSM | Orthogonal States
The orthogonal states can be represented as tuples with arity > 2, e.g.

{submitted , deciding , done}

Records can be used for this conveniently:
submitted {

feasability = deciding ,
security = done

}

-record (submitted , {
feasability = ’_’ :: deciding | done
security = ’_’ :: deciding | done

}).
-type submitted () :: submitted |

submitted {}.

Two ways to specify next state with orthogonal states:

{ next_state ,
State#submitted { security = done},
NewData }

{ next_state ,
#submitted { security = done}
NewData }

The first case will re-enter states in both regions, while in the second case,
the {entry, _} callback will not be called in the feasibility region.

#CodeBEAMSTO 17 / 21

FSM | Orthogonal States – scopes

Timers can be defined also in the orthogonal states (as well as keys and other):
eproc_timer :set(step_retry , 1000 , retry , #submitted{feasability = deciding}),
eproc_timer :set(step_giveup , 5000 , giveup , submitted),

The actual scopes in the case of retry is {submitted, deciding, ’_’}.

Events can be handled for the entire state (using the regular pattern matching):
handle_state (#submitted{}, {event , reject }, Data) ->

{ next_state , rejected, Data };

Note, the next state in this case is rejected instead of {rejected,
notifying_reject}. This allows to isolate the states.

#CodeBEAMSTO 18 / 21

FSM | Orthogonal States – joins

handle_state (# submitted {
feasability = done ,
security = done

}, {entered, _From }, D) ->
{ next_state , approved , D}

Order of callbacks:
1. event – represents a trigger of a

transition.
2. exit (recursive) – from the deepest

state, to the outermost, that is left.
3. entry (recursive) – from the outermost

state, to the deepest. Only the state
that is entered is named (not ’_’).

4. entered – called when all the states
are entered. Here the 1st argument
has all the states specified.

#CodeBEAMSTO 19 / 21

FSM | Orthogonal States – sequence of callbacks
A pseudocode listing of callbacks invoked when performing a transition:

draft submit−−−−−−−→ submitted

(draft , {event, submit },) -> { next_state , submitted }
(draft , {exit, submitted }) -> ok

(submitted , {entry, draft }) ->
{ next_state , # submitted { feasibility =deciding , security = deciding }}

(# submitted { feasibility =deciding , security =’_’ }, {entry, draft }) -> ok
(# submitted { feasibility =’_’, security = deciding }, {entry, draft }) -> ok
(# submitted { feasibility =deciding , security = deciding }, {entered, draft }) -> ok

The entry calls with ’_’ allows to pattern match state names for a particular region:
handle_state (# submitted { security = deciding }, {entry , _}, Data) ->

% Setup things needed for the state.

#CodeBEAMSTO 20 / 21

Questions?

#CodeBEAMSTO 21 / 21

	Introduction
	Structured State

