Implementing Long Running Business Processes

Karolis Petrauskas

Co-founder @ Erisata

CodeBEAM STO 2019

#CodeBEAMSTO 1/21

Business Processes

We consider a business process a process, that is
» Understood by the business people (avoids technical details);
» Of high abstraction level (coordinates interaction between multiple parties);
» Crosses several applications (often viewed as a layer of integration platform);
» Takes from milliseconds to years to complete.

Business processes are sometimes implemented using BPM solutions.

approve

Manager

=

User

Get Access Right ,
approve, implement

Admnistrator

#CodeBEAMSTO 2/21

Business Processes | Example

Users often define business processes as BPMN diagrams.

g -
T L) Fil S ; -
2 request = Notify HJ‘D®
user ”
" Reject reason A]
)
=
P
-
$ T — Reject
gl % Y 5 ’ ;
e} o <+ = > .l Make PRTOve
5 = v = decision
2 s ; X ;
= Motify D ——
o) Manager
S
g ol
e« 2
o e,
= ~
k7] — L_IFeasiblity
E ﬁ assessment
'2 MNotify R —
Administrator
#CodeBEAMSTO

3/21

Business Processes | In Erlang/OTP?

We found no BPM implementation in Erlang/OTP.
Maybe the standard libraries are enough?

BusinessProcesses N ErlangProcesses # @7

#CodeBEAMSTO 4 /21

Business Processes | Support in Erlang/OTP

Erlang/OTP has a number of features making it a good basis for a BPM:

> Every separate activity runs as a process, including the business processes.

> Finite state machines are sometimes used to implement the business processes,
Erlang/OTP supports that by

» gen_statem (previously gen_fsm);
» plain_fsm and other.

> Fault tolerance, process isolation and high performance.

» Test frameworks (especially the Common Test).

#CodeBEAMSTO 5/21

Business Processes | What's Missing in Erlang/OTP

The following seems to be missing for implementing business processes:
» Persistence should be done explicitly (sometimes tedious).
» Process migration in a cluster (processes are active, and have side effects).

» Better support for complicated state machines (a lot of states).

We have implemented a library / framework to handle that:
https://github.com /erisata/eproc_core

Main features it provides:
» Automatic persistence on each transition.
» A process registry (distributes processes in a cluster).
» Support for structured states (nested and orthogonal).

» Designed for devs and admins.

#CodeBEAMSTO 6 /21

https://github.com/erisata/eproc_core

Finite State Machine
A state machine can be described as a relation

States x Events — States x Effects

More detailed descriptions are sometimes useful.

» We have added semantics to the state
names in the FSM. t
» The added semantic is inspired by the PR ;
FSMs in the UML. A =
» Structured states allow to manage timers, U
keys, state entries in more declarative way. next .
done _ B

done

#CodeBEAMSTO 7/21

FSM | Example

The BPMN diagrams rarely maps 1-1 to the state machine.

(‘state machine Request for Access Rights RO[[=] Request for Access Rights RO }J

: \L— recall

‘ timeout reject
il (rejected ‘[timeout

(' draft J&i submitted Jm" approved

The FSM notation helps to consider more Event x State combinations — edge cases.

#CodeBEAMSTO

8/ 21

FSM | Nested States

(state machine Request for Access Rights R1[@ Request for Access Rights R1]J

recal

[—QWL—]_%

rem‘naerc;

recall

]

submitted

| approve

approved

imple M&?

notifying_user

I

rejected

> grace_period

timeout
O

#CodeBEAMSTO

9/ 21

FSM | Nested States — pattern matching

State entry is usually performed in multiple steps, allowing to decouple the states:

handle_state (approved, {entry, submitted}, StateData) ->
{next_state, {approved, implementing}, StateDatal;

handle_state ({approved, implementing}, {entry, submitted}, StateData) ->
{ok, StateDatal;

Event handling by states can be implemented via pattern matching:
» Handle all substate state events (state entry is not called in this case):

handle_state ({approved, _}, {event, recall}, StateData) ->
% It is too late to perform the recall.
{same_state, StateDatal};

> Handle an event particular substate:

handle_state ({approved, implementing}, {timer, timeoutl}, StateData) ->
{final_state, terminated, StateDatal;

#CodeBEAMSTO 10 / 21

FSM | Nested States — scopes

Nested states are useful to limit scope of timers, they are cancelled automatically
when the FSM exits the specified scope:

handle_state(...) ->

ok = eproc_timer:set(step_retry, 1000, retry, {approved, implementingl),
ok = eproc_timer:set(step_alarm, 10000, alarm, approved),

The same can be done with additional keys, that can be used to locate the process
while being in the specified scope (approved, in this case):

handle_state(...) ->

ok = eproc_router:add_key ({impl_id, ImplId}, approved),

Similar concept of keys is used in BPEL, although usually keys have the scope ’_’.
The timer scoped are used extensively in practice.

#CodeBEAMSTO 11 /21

FSM | Active and Passive States

| 2

It appears to be a good practice to separate
active and passive states (especially for error
handling):
P> Passive states are used to wait for some
external events (or timers).
» Active sates are used to perform some actions
(usually involving external resources).

In order to manage errors, retry and giveup
timers are used in active states.

The active state is left when the do action is
successfully completed.

It appears to be a bad practice to perform an
action on a transition (trigger is lost on error).

#CodeBEAMSTO

Passive state:
' nexz_itale

waiting_for_decision

{ timeout

decision_made @

Active state:

do retry / send_do_event

wactives
sending_to_external_system
| entry / set_retry_timer
set_giveup_timer
send_do_event
do/ send_to_external_system
| exit/ cancel_timers_by_scope

] [done]
® 1501

FSM | Active States — separating transactions

external_system

.1 proceed . :
2 t state == ding_to_ext | | .
T e sevina b edemaLsysE » Only the timers and the self
(ertry, + | [retyimer) b] event is sent on the state
1 I
i 4: giveup timer | e ! entry.
| 5 do | "))
'_[sanding_to_e:rternal_syslsm] il : > The aCtual Operat|on IS
__________ = ! performed on the self event
[{set, do} 1 N
6 send it dO.
' e L e _ [.
I : » If the operation was
| B: next_state ==, | N
_____ . ! successful, go to the next
I state.
1
1
I

#CodeBEAMSTO 13 /21

FSM | Active States — handling unexpected errors

process external_system

1: proceed |

I
® M 2 next_state == sending_to_sxternal_system | 4 On error, be it a crash, or
I
___________ ! {error, Reason} returned,
I{emﬂ' o 3; retry_timer Yy . K i
| dgueptimer || ! nothing is done usually.
5: do - . .
|) ! » The retry timer will be used
(sendrng_to_exlemnl_systemJ i tO retry the aCtion.
(eotio ! Bsend ! » It will set the next retry timer
| | 7. error
) € ————— et J—' and send the second do
s - — — | I action.
8 timel ! . .
[e | » The giveup timer can be
_ e } = ' used to handle infinite retry
l loops.
I
1

#CodeBEAMSTO - 14 / 21

FSM | Active States — generic handler

The pattern of the active states is very common,
therefore a generic function was defined to handle that.

handle_state(s, {entry, _}, D) ->
% Set the retry and giveup timers,
% send the DO event.
{ok, D};
handle_state(s, {self, act}, D) ->
case do_act (D) of
{ok, ND} -> {next_state, Next, ND}
_ -> {same_state, D}
end ;
handle_state(s, {timer, retryl}, D) ->
{next_state, s, D};
handle_state(s, {timer, giveup}, D) ->
{next_state, Other, D};

#CodeBEAMSTO

handle_state(s, T, D) ->
gen_active_state(s, T, D, #{
do => {act, fun do_act/1},
retry => {r, 100, retryl,
giveup => {g, 500, giveup, Other},
next => Next

3

This approach has made state definitions
more compact, and declarative.

15 / 21

FSM | Orthogonal States

Some states do not have a strict ordering of states, like submitted bellow.

(‘state machine Requestfor Access Rights R2[=] Request for Access Rights R2 U
? recall
|-_". draft]ﬂ) submitted approved

feasibility e

« deciding }ﬁ"" i done J— H miplg anting
reminder C *************** .

SEC - | notifying_user
1 deciding [———-)[”" . done]— -—_..—,

lraject llrr&uut
racall rejected
— s timeout
#CodeBEAMSTO

16 / 21

FSM | Orthogonal States

The orthogonal states can be represented as tuples with arity > 2, e.g.

{submitted, deciding, done} -record (submitted, {
feasability = ’_° :: deciding | done
Records can be used for this conveniently: })Security =’ :: deciding | done
#submitted{ -type submitted() :: submitted |
feasability = deciding, #submitted{}.
security = done
}

Two ways to specify next state with orthogonal states:

{next_state, {next_state,
State#submitted{security = done}, #submitted{security = done}
NewData} NewData}

The first case will re-enter states in both regions, while in the second case,
the {entry, _} callback will not be called in the feasibility region.

#CodeBEAMSTO 17 /21

FSM | Orthogonal States — scopes

Timers can be defined also in the orthogonal states (as well as keys and other):

eproc_timer:set(step_retry, 1000, retry, #submitted{feasability = deciding}),
eproc_timer:set(step_giveup, 5000, giveup, submitted),

The actual scopes in the case of retry is {submitted, deciding, ’_’}.

Events can be handled for the entire state (using the regular pattern matching):

handle_state (#submitted{}, {event, reject}, Data) ->
{next_state, rejected, Datal};

Note, the next state in this case is rejected instead of {rejected,
notifying_reject}. This allows to isolate the states.

#CodeBEAMSTO 18 /21

FSM | Orthogonal States — joins

Order of callbacks:

approved
= [— .mp;emem,ng 1. event — represents a trigger of a
.' : transition.
notlfylng user . .
5 done _' 2. exit (recursive) — from the deepest

state, to the outermost, that is left.

3. entry (recursive) — from the outermost
handle_state (#submitted{ state, to the deepest. Only the state

feasability = done, . . s
security . - dome that is entered is named (not ’_?).
ro sty oo DN -2 4. entered — called when all the states

{next_state, approved, D}
are entered. Here the 1st argument

has all the states specified.

#CodeBEAMSTO 19 /21

FSM | Orthogonal States — sequence of callbacks

A pseudocode listing of callbacks invoked when performing a transition:

submit

draft ———— submitted
(draft, {event, submit},) -> {next_state, submitted}
(draft, {exit, submittedl}) -> ok

(submitted, {entry, draftl}) ->
{next_state, #submitted{feasibility=deciding, security=decidingl}}

(#submitted{feasibility=deciding, security=’_" }, {entry, draft}) -> ok

(#submitted{feasibility=’_", security=decidingl}, {entry, draft}) -> ok
(#submitted{feasibility=deciding, security=deciding}, {entered, draftl}) -> ok

The entry calls with > _’ allows to pattern match state names for a particular region:

handle_state (#submitted{security=deciding}, {entry, _}, Data) ->
% Setup things needed for the state.

#CodeBEAMSTO 20 /21

Questions?

#CodeBEAMSTO 21 /21

	Introduction
	Structured State

