
Metaprogramming +
DSL Design
in Elixir

by Adi Iyengar

About Me
➔ Adi Iyengar

◆ GitHub: thebugcatcher

◆ Twitter: aditya7iyengar

➔ Pronouns: He/Him

➔ Senior Software Engineer (Elixir, 5+ years)

➔ Loves catching bugs (software bugs)

➔ ❤ TDD

➔ 💙 Elixir

➔ 💖 Theoretical Physics

Outline

➔ What is Metaprogramming

➔ When to use Metaprogramming

➔ Metaprogramming in Elixir

➔ Build a DSL in Elixir

➔ Questions

Metaprogramming: What is it?

Code that writes code!

A program is a metaprogram if it:

➔ Generates Code

➔ Analyzes other code

➔ Stores information about other code

➔ Injects behavior into other code

➔ Treats other code as arguments or data

The language used to metaprogram is called the metalanguage.

Elixir’s metalanguage is Elixir itself.. [Reflectivity]

Example: Phoenix Router Pipeline

Pros:

➔ Hides complexity of the implementation

➔ Increases developer productivity

➔ Automates and Standardizes tedious boilerplate code

Cons:

➔ Decreases transparency

➔ Increases overall code complexity

Metaprogramming: Pros and Cons
Example: Phoenix Router Pipeline

Use metaprogramming only when:

➔ You have exhausted all other options 🤷
➔ You have minimized the “meta” code (Separate interface from implementation)

➔ You have maximized its determinism via thorough unit and integration testing

➔ You have maximized its inspectability; The code should be debuggable

➔ The requirements for the DSL are less volatile; Less maintenance

➔ The cost of failure is manageable

Metaprogramming isn’t evil, but it needs to be used thoughtfully.

Metaprogramming: When to use it?

Metaprogramming in Elixir
Three pillars of Metaprogramming in Elixir:

➔ Elixir representation of the Abstract Syntax Tree

◆ quoted expressions

➔ Code/Behavior injection

◆ macros

➔ Compile-time callbacks

◆ @before_compile, @after_compile and
@on_definition

Elixir representation of the AST

quote/2 converts a block of code in Elixir to
its AST representation

3 Element Tuple:

➔ Function

➔ Metadata

➔ Arguments

Quoted Expressions

Quoted Expressions (AST)

Code.eval_quoted/3

Code.eval_quoted/3 can evaluate a quoted expression using a set of
variable bindings and an environment.

It returns the final result with variable bindings after the evaluation.

Merging two quoted expressions

You can manually merge two quoted expressions by wrapping them in
a 3 Element tuple with :__block__ as the function.

Hygienic evaluation of quotes

Quoted Expressions are evaluated hygienically.
This means variables don’t leak across scopes, in
and out of the quoted expression, upon
evaluation.

So, anything defined inside an evaluated quoted
expression doesn’t conflict with the outer
context.

And, anything defined outside the quoted
expression doesn’t conflict with the inner context.

var!/2 and unquote/2

To explicitly affect the context beyond the
quoted expression boundary, we can use
var!/2 or unquote/2.

var!: evaluation of the quoted expression.

unquote: definition of the quoted expression.

Code Injection (the bad way)
We can use Code.eval_quoted/3 to inject code into a module at the time of its compilation.

Code Injection (the good way)
macro is the correct way of injecting code/behavior into another module at compile-time.

Code Injection (use keyword)
Elixir has a special macro __using__/1 which can be invoked using the use keyword.

Compile-time callbacks

Hook into the compilation of a module and change its behavior.

Elixir has 3 compile-time callbacks:

➔ @before_compile

➔ @after_compile

➔ @on_definition

@before_compile
➔ Invoked right before a module’s bytecode is generated

➔ Takes the environment as the argument

➔ Needs to be defined in a different module

@after_compile
➔ Invoked after a module’s bytecode is generated

➔ Takes the environment and bytecode as arguments

➔ Can be defined in the same module itself

@on_definition
➔ Invoked whenever a function/macro is defined in the current module

➔ Takes six arguments.

➔ Needs to be defined in a different module; can only be a function (no macros allowed)

Summary
➔ In Elixir, metaprogramming revolves around three constructs: quoted expressions, macros

and compile-time callbacks.

➔ Quoted Expressions are Elixir representation of ASTs which are evaluated hygienically.

➔ To add dynamic behavior to them, use var! (evaluation-time) or unquote (definition-time).

➔ Macros are used to inject behavior using quoted expressions at compile-time.

➔ Compile-time callbacks are used to run tasks (or add behavior) by hooking into the
compile-time of a module.

➔ Metaprogramming should be used carefully, as it makes code more complex.

➔ Use simple metaprogramming to make code digestible. A DSL is a good use case.

Let’s build a DSL
➔ A simple DSL to compose music in Elixir

➔ Calls ALSA’s aplay command to play a
note

➔ Define a sequence of notes.

➔ A note needs to have a class (rest, C, D, E,
F..), a modifier (sharp or base), octet,
duration and volume (with defaults).

➔ A sequence can embed notes from other
sequences.

➔ Very much inspired by the phoenix router
DSL

Things already done
➔ Note module/struct, representing a note to be played, along with defaults.

◆ %Note{class: :a, modifier: :base, octet: 4}

➔ NotePlayer module, which calls ALSA’s aplay command.

◆ Use NotePlayer.play/1 function which takes a %Note{}

➔ Unit and Integration Tests for our DSL.

◆ TDD!!

➔ Final (super awesome) track using the expected DSL.

◆ This will only work once the DSL is done. #Incentive

TODO
➔ DSL.__using__/1 macro

➔ sequence/2 macro

◆ A way to store a list of notes

➔ note/2 macro inside sequence/2

◆ Add to list of notes under current
sequence

➔ embed_notes/1 macro inside
sequence/2

◆ Add a list of notes from an
existing sequence to current
sequence

◆ Track defined sequences

➔ play/1 function which takes a sequence

◆ Use NotePlayer.play/1 to play a
list of notes under a sequence

Let’s Code! 💻

