
Anton Lavrik
Tools everyone needs — a reflection on building
and running WhatsApp servers

Code Beam SF 2018

Since our last talk at Erlang Factory in 2014

monthly users: 465M -> 1.5B x3

daily messages: 19B -> 60B x3

daily pics: 600M -> 4.5B x7

daily videos: 100M -> 1B x10!

Even more scalable and reliable system

Powered by Erlang

WhatsApp Server

WhatsApp Server: under the hood

• deliver asynchronous messages reliably in real-time

• keep user messages only until delivered

• highly available service

• handle peak load

Databases

Partitioned embedded DB

DBs and caches

Our databases
Majority fit in RAM

Data models and access patterns:

• key-value, read-modify-write

• fast iteration over key space

• graph, e.g. addressbook, group membership

zooming in…

Partitioned embedded DB

Partitioning: key to node mapping

island

partition number = erlang:phash2(Key, ?NUM_PARTITIONS)

Backend/DB replicated island

replicationDB partitions

gen_server
registered with pg2

Backend & DB replicated island

replicationDB partitions

gen_server
registered with pg2

zooming in…

Backend node internals

workers, # DB frags are tunable

key -> worker mapping is deterministic:
hash(key, ?NUM_WORKERS)

goal 1: serialize operations for a key to prevent
inconsistency

goal 2: minimize lock contention in DB frag on
concurrent access

application logic DB partition

Key idea

deterministic key -> node -> worker mapping

serialize operations for a key to avoid explicit locking

minimize lock contention in DB frag

consistency

efficiency

Backend node internals

workers, # DB frags are tunable

key -> worker mapping is deterministic:
hash(key, ?NUM_WORKERS)

goal 1: serialize operations for a key to prevent
inconsistency

goal 2: minimize lock contention in DB frag on
concurrent access

application logic DB partition

zooming in…

What is DB frag?

ETS table + replication + persistence

hash table

But really, what is DB frag?
2 options:

Mnesia with async_dirty

ForgETSheavily patched
and rigid

new, shiny and
awesome

ForgETS: clean solution for our use cases

• Resilience to network problems

• Automatic reconciliation

• Easier rebalancing for scaling

• Extra features

don’t miss Mikhail’s talk @

Benefits Our DB setup

- few moving pieces

- predictable behavior

- efficiency – e.g. short read-modify-write access

- flexible

- scalable

- operated by team who runs the backend

biggest DB was 50B records 2-way replicated across 128 nodes

Performance

Optimizing number of messages

client to backend server remote
call: 3 messages

sometimes we reduce remote calls
down to 2 messages by sending
directly to worker

we don’t use gen_server:call/cast
cross-node as it requires 2(?)
extra roundtrips for remote monitor

client
backend

More on remote calls & round-trips

nodes can become slow, crash, disconnect at any
moment, requests can be purposefully dropped

we use timeouts to detect remote calls failures: a single
simple model for all type failures

use one-way messages when possible

Bottleneck example

backend

bottleneck

Fix bottleneck by parallelizing

backend

Handling overload

Overload: things to consider

• handle backlog: decide where to queue, how to queue

• decouple: prevent uncontrolled propagation of failures
and backpressure through the system

Generally strive to remove all backpressure

cross-node request path
client node server node

What happens on overload?
client node server node

Q

process queue

backpressure and queuing on server node
client node server node

Q Q

process queue

native Erlang
backpressure
mechanism:

deprioritizing
procs sending
into large queue

How it ends: OOM
client node server node

Q Q

process queue

Erlang process
queues are
unbounded

With sender
penalty, system
slows down while
queues are
growing…

Solution: custom queue
sever node: before server node: after

Q

worker request
queue

pros:
no backpressure,
can be bounded

cons:
less efficient, we
don’t always use it

Q Q

process queue

Solution: bounded worker queue
sever node: before server node: after

quickly discard
requests when
message_queue
_len > threshold

pros:
simple and
effective

Q Q

process queue

Q

bounded process queue

Solution: discard old requests

keep queue sizes under control by discarding expired
requests

based on TTL timeout provided by the client

or based on configurable bound for max request age

pros: simple and effective
cons: may not always work

Server toolbox: gen_factory
worker pool with bells and whistles:

• different modes for worker dispatch and key to worker mapping: hash-based, round-robin, first
available worker, first available worker with serialization on a key

• bounded queues

• discarding old requests

• workers can have state! — e.g. http client worker pool

• request pipelining

• detecting and killing stuck workers

• integrated with operation and monitoring tools

backpressure and queuing on client node
client node server node

Q

port queue

on slow network or
slow sever node:

Erlang port queues
are bounded

But … suspends
clients on busy
port

What could happen?
client node server node

Q

port queue

- OOM because
there is a chance
there are some
unbounded queues
waiting on clients

- cascading failure,
e.g. in case of chat
fronted, clients are
also servers

Q

Q

Solutions: nosuspend, large dist buffers
client node: before client node: after

Q

port queue

drop message
on busy port,
instead of
suspending
client proc

we also use large
dist port buffers

send_nosuspend()

Solution: custom queue
client node: before client node: after

Q

port queue

custom buffer
proc in front of
dist port

essentially,
outbound queue
for each
destination node

Q

custom queue

Solution: wandist

alternative to dist, we use it for connecting dist clusters

• transparently handles TCP reconnect, always
connected vs dist. blocking connect

• reliable delivery across reconnects

• always buffering

Queues and backlog

Type of queues:

• process queue (off_heap in R20)
• port queue
• custom queue (list-based, ets-based)
• process queue, i.e. spawn() – the ultimate concurrent queue
• combination of the above, e.g. worker pool

backlog is the most important operational metric in our system

Erlang makes it easy to reason about it, and handle it*

How we approach concurrency
Backend:

• gen_factory covers most of our queue management and parallelization use cases
• in some cases we run it with 1000s of workers, to help with throughput when working with external

resources
• in any case, concurrency is bounded

Frontend:

• 500K concurrent processes handling mobile client sessions
• gen_factory API

Ad-hoc?

• we rarely spawn() directly, but it is useful sometimes

Erlang cluster

Dist

Dist works well for our use case:

> length(nodes()).
1203

Problems:

- full mesh connectivity
- limited scale, not flexible

Wandist: scale beyond dist

• only connect clusters that talk to each other

• publish pg2 groups across clusters

• transparently handles, slow network TCP reconnect, always connected

• reliable delivery

• auth & encryption

• implemented in Erlang on top of gen_tcp => less efficient than dist

Operations

Common failures and solutions

sick or crashed node: hardware problem, bad code push

quickly crash/stop to allow automatic failover

backlog

less obvious, the goal is to prevent failure propagation

in bad cases, we have to fully gate the system by preventing clients from
logging in

Monitoring: we’ve got backlog!

we get alerted when when there is backlog:

- the node has been running with large queues for
some time

- worker queue > threshold

- discarded requests in bounded queues

Monitoring: queue sizes and why

second-by-second BEAM stats:

- total size of all queues
- queue size of the proc with max queue
- total number of procs with non-zero queue

- internal message rate
- inbound message rate
- outbound message rate
- scheduler utilization

- more granular: gc, scheduler, ports and io

Monitoring: where is the backlog?

log for each process with queue:

• name & type

• how bad it is: enqueue & dequeue rates, time spent in
the queue, estimated time to drain

• extra details: reductions, heap, current_call, initial call

Deploys: we love hot code loading

takes several minutes to roll out changes even for large
clusters

no restart needed: critical with frontend with active user
sessions, and backends with embedded DBs

most deploys are small and done by service owners

caveats: load order, state migration, records

Our BEAM patches

Beam is getting better with each release.

All of it can be done on vanilla Erlang R20: we patch only
for scalability (mnesia, pg2), minor performance
optimizations, and monitoring.

Erlang benefits for us

Too many to list…

But ultimately, it allows us to:

- support product features
- scale
- provide highly-available service
- stay very efficient as engineers !!!

Thank you

Interested? Talk to us.

