
BUILDING AND INTEGRATING
A DATA PLATFORM

CodeBeam SF - 2018

benoît chesneau

craftsman working on P2P and custom data
endpoints solution

enki multimedia: the corporate interface

member of the Erlang Industrial User Group

about me

micromobile
services

1. Does my service do only one thing?

2. Is my service autonomous?

3. Does this service own its own data?

a good micro-service?

isolated

own its own data

resilient

communicate with other by asynchronous
messages

micro-servcice

sharing data in the mobile age between and across
micro-services make applications more scalable
and resilient

Ex: messaging systems,

sharing data

sharing data

update  
and query

microservice

standard solution: client
call a webservices to query
and update the data

problem: if connection is
slow or absent the micro-
service stops

cloud  
storage

sharing data

microservice

local storage replicated
always available

eventually consistent

cloud  
storage

update  
and query

synchronize

local  
storage

barrel
Bring and keep a
view of your data
near your application

a database focusing on simplicity

document oriented

Automatic indexing

Focusing on simplicity

Docs are maps

{ “id” : “someid”,
 “Key” : “value” }

automatic indexing
Access by path: /locations/country/Germany

Local first

local first: bring and keep a view of your data near your
application

data is synchronised with other storages

Replication to and from any sources

partial view

query
node

Title Text

library embedded in your Erlang application(*)

available as a micro-service via HTTP(1,2) or via
the Erlang distribution

Peer to peer: a barrel is the unit

Semantic to allow distributed transactions

P2p
(*) including elixir or lfe, or ….

every peers fork the master, updates are offline

peers pull and merge from the main server

works well for back pressure (writes can be
delayed)

CRDT semantic for conflict-free data structures

causality

no vector clock

revision tree

a a a

b ccommit

Alice Iko Bob

state
t0

pull

operations

manual
automatic
rejected

a a a

b b

Alice Iko Bob

state
t0

rejected

pull

pull

t1
c b

dmerge

operations

a a a

b b

Alice Iko Bob

state
t2

pull

t3
c b

d

pull

operations

?
??Erlang

Erlang is slow

Erlang is only for communications protocols

I should do it rust…

No access to low level memory and file systems
APIS

Why not Erlang

Barrel is more a data orchestration service than a
database

Basic indexing

Focus on replicating the data

Nifs to help

Why Erlang

Doc: Revision + Metadata data:

Read-Modify-Write: concurrency issue

Incremental changes log: append only

Indexes: when a new winning version is found the
doc is indexed.

Blobs (attachments)

What we write

Provides connectors for other storages

RocksdDB for local persistent storage  
https://gitlab.com/barrel-db/erlang-rocksdb.git

Dirty-nifs

ETS?

Use the right tool for …

https://gitlab.com/barrel-db/erlang-rocksdb.git

Goal: anticipate the resource usage at the node
level

Return early to the client

Control applied to all resources in the nodes

Back-pressure

let it bend: be resilient

worker_pool  
https://github.com/inaka/worker_pool

Hard to debug your program

Little control on the pending requests

Ecpocxy but handle back-pressure the reverse way

Simple pooling

https://github.com/inaka/worker_pool

Clients and Jobs should be handled independently

Active and passive regularion

Request unit: to set the number of requests we
want to serve / seconds

Flow-Based programming?

sbroker, partially fit the bill:  
https://github.com/fishcakez/sbroker

Dynamic regulation

Started with a simple “Single Writer Multiple
Readers” pattern

bottleneck: A process to handle the final write to the
database

We do and // most of the work out of the write
process

Indexes are processed asynchronously (but a
session can read its own writes if needed)

Concurrency challenge

Read access is shared via ETS

On request a monitor to the db is created

ets: to share the state
between readers

When using the erlang distribution, events are
dispatched by nodes, processes always subscribe
locally

Events

Erlang distribution is not used to share the data

Erlang distribution can be switched

HTTP transports

Transport the data

Roadmap

1.0: 24 march 2018

1.1: 24 april 2018

…

Milestones

1.0: Websockets support (with new hackney)

1.1: Experimental: GRPC

Coming features

?

barrel is released in march 2018

https://barrel-db.org

contact me @benoitc

https://barrel-db.org

