
Code BEAM SF 
2018

Hype For 
Types

Using Dialyzer to 
bring type 

checking to your 
Elixir code



@emmatcu
#CodeBEAMSF

Hi, I’m Emma Cunningham! Ʋ



@emmatcu
#CodeBEAMSF



@emmatcu
#CodeBEAMSF



@emmatcu
#CodeBEAMSF

By the end of this talk, we will be able to...

★ understand & appreciate the power of type theory

★ be able to apply these concepts to our Elixir 

development practices

★ live slightly more free of stress knowing that we’ve 

got a type checker that has our back!



@emmatcu
#CodeBEAMSF

Type theory & me



@emmatcu
#CodeBEAMSF

Portrait of a type-loving functional programmer (c. 2008)



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism?



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism!

Haskell Curry William Howard



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism!



@emmatcu
#CodeBEAMSF

The origins of type theory



@emmatcu
#CodeBEAMSF

Georg Cantor Gottlob Frege



@emmatcu
#CodeBEAMSF

Russell’s paradox



@emmatcu
#CodeBEAMSF

There’s a barber who 
shaves all people 
who do not shave 

themselves…

Who shaves the 
barber??



@emmatcu
#CodeBEAMSF

Types were created to avoid 
paradoxes!



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism, 
revisited!

Logic 
Proofs 

Formula 
A implies B 

Axiom
Soundness theorem 

Completeness theorem 
Incompleteness theorem

CS 
Programs
Types
function from A to B 
System primitive
Compiler
Debugger 
Infinite loop



@emmatcu
#CodeBEAMSF

Paradoxes in logical theory are like 
bugs in software.

If types can save us from paradoxes, 
they can also save us from bugs.



@emmatcu
#CodeBEAMSF

The Curry-Howard isomorphism!



@emmatcu
#CodeBEAMSF

Type systems



@emmatcu
#CodeBEAMSF

Type systems

a set of formalized rules that assign types to units of 
meaning within a language (variables, functions, etc.) and 

dictate what constitutes a type error



@emmatcu
#CodeBEAMSF

Type systems

Static

type values known at 
compile time, either by 

specification or by 
inference

Dynamic

types are associated 
with run-time values, 

no need for 
specification



@emmatcu
#CodeBEAMSF

Type systems

Strong

errors when there are 
type conflicts (e.g. when a 

function is called w/ an 
argument of the wrong 

type)

Weak

may perform implicit type 
conversion or sometimes 
unpredictable results as 

the product of a type 
conflict



@emmatcu
#CodeBEAMSF

Type systems

A type-safe language does 
not allow violations of the 
language’s type system



@emmatcu
#CodeBEAMSF

Type systems

Type-checking is the process of 
verifying and enforcing the 

constraints of types; this process may 
occur at compile-time or run-time.



@emmatcu
#CodeBEAMSF

Elixir and types



@emmatcu
#CodeBEAMSF

You already know about types in Elixir!



@emmatcu
#CodeBEAMSF

Some types in Elixir

1 # integer
1.0 # float
true # boolean
:foo # atom
"bar" # string
[1, 2, 3] # list
%{foo: “bar”} # map



@emmatcu
#CodeBEAMSF

And you may already be leveraging 
some of the power of types in Elixir



@emmatcu
#CodeBEAMSF

Strongly and dynamically typed

The compiler won’t catch the type violation; this will only 
surface during run-time, but it will error



@emmatcu
#CodeBEAMSF

Imagine the horror (at run-time)Imagine the rage (at run-time)Imagine the horror (at run-time)



@emmatcu
#CodeBEAMSF

Success typing with Dialyzer

The compiler won’t catch the type violation; this will only 
surface during run-time, but it will error

a type checker for a language like Erlang: 
● should work without type declarations being there (can 

accept hints), 
● should be simple and readable, 
● should adapt to the language (and not the other way 

around),
● only complain on type errors that would guarantee a 

crash.
“Practical Type Inference Based on Success Typings”, 
Lindahl & Sagonas 2006



@emmatcu
#CodeBEAMSF

Dialyzer: Discrepancy Analyzer



@emmatcu
#CodeBEAMSF

Add Dialyzer/Dialyxir to your Elixir project

mix.exs



@emmatcu
#CodeBEAMSF

Get/compile the dep & generate plt

n.b.: This may take a very, very long time.
You only have to do this the first time you run 

Dialyzer on a project 



@emmatcu
#CodeBEAMSF

Run Dialyzer

mix dialyzer

mix dialyzer



@emmatcu
#CodeBEAMSF

Elixir LS support

mix dialyzer



@emmatcu
#CodeBEAMSF

@spec



@emmatcu
#CodeBEAMSF

But what about testing?



@emmatcu
#CodeBEAMSF

But what about testing?

Type checking frees your tests from needing 
to check these low-level concerns and instead 

lets them focus on business logic.



@emmatcu
#CodeBEAMSF

Some benefits

★ Reduce runtime errors

★ Type annotations help w/ documentation

★ Project maintainability improved

★ Sleep easy at night



@emmatcu
#CodeBEAMSF

h.t. @bodil



Code BEAM 
SF 2018

Thank you!

Emma Cunningham

@emmatcu
the.cunning.ham@gmail.com


