The Wide World of Actors,
or,
Can | Have an Erlang Pony?

Code BEAM San Francisco
Friday, March 16, 2018

AT
* ~

Scott Lystig Fritchie
Wallaroo Labs

Introducing Myself

e | am Scott Lystig Fritchie

e Currently at Wallaroo Labs

e Formerly of VMware Research, Basho, Gemini Mobile,
Caspian Networks, Sendmail, and UNIX sysadmin prior

e Former co-chair of ACM ICFP Erlang Workshop for 4 years

o International Conference on Functional Programming
e @slfritchie at GitHub and Twitter
e | eat and cook a lot of Japanese food

One Slide About Wallaroo

e Wallaroo = data streaming processor
e Easy scaling of Python & Go processing logic
e Targets apps not well-served by Storm, Flink, Spark, ...
e Very low latency = efficiency
e \ery low jitter = predictable tail latencies
e Fast interface to foreign language interpreters (in C!)
e Wallaroo as great Erlang app?
e Sure, but ...
e ... it's written in Pony

Outline of the Talk

BEAM =:= Actors

e False!
A Brief & Biased History of Programming
Definition of the Actor Model
20+ Extra Dimensions to the Actor Model
Actor implementations: BEAM languages vs. Pony
Cool Pony Stuff Outside of the Actor Model

My Goals

e Better understanding of where the Actor Model came from.

e Many dimensions to design & build an Actor Model system.
e BEAM is an opinionated implementation.

e BEAM & Pony are quite similar
e ... but the exceptions are big exceptions.

e Pony’s implementation of Actor Model might be better that

BEAM'’s in some cases.
e Pony is interesting enough to learn more about.
e Type systems are amazing tools. Don’t ignore Dialyzer!

Programming History in 1 Bad Slide &D

e Programming is COOL!
e Writing & debugging programs is NOT EASY
e (Industry introduces timesharing & concurrency)
e (... programming languages invented ...)
e (... structured programming invented ...)
e Managing concurrency is DIFFICULT
e Managing concurrency + actual simultaneous execution
is WICKED HAHD

We must manage
complexity or else go
Insane.

BEAM =:= Actors

false

The Actor Model

1. The actor is the fundamental unit of computation
2. An actor has its own private state: registers, memory, etc.
3. An actor can read & modify only its own private state
e Itis private state: no other actor has any access
4. An actor can send a message to another actor
5. An actor can react to a message that was sent to it
e Message passing is the only communication
mechanism between actors
6. An actor can create a new actor

e Hoare (c)
1985

e Armstrong,
Virding,
Wikstrom,
Williams (c)
1993

Concurrent
Programming:in

ERLANG

i Second Edition

laes Wikstrom Mike Williams

CSP + opinionated telecom
glant + research lab

equals Erlang

Let's get more specific
about what an actor
iImplementation might
really need

Actor Model Details

e Message sending:

® Sync vs. async message sending

e named vs. unnamed processes

e message destination: process vs. channel
o 1:17
e broadcast?
e other?

e typed vs. untyped messages

Actor Model Details

e Message receiving
e Reliable vs. unreliable delivery
e Firstin first out (FIFO) vs. causal vs. another order
e Blocking semantics?
e Block waiting for a message?
e Time-aware vs. time-ignorant

Actor Model Details

e How actors are scheduled to execute?
e When to start running an actor?
e \When to stop running an actor
e Cooperative vs. preemptive scheduling
e Work stealing?

Actor Model Details

e Memory limits
e Channel/ambient/mailbox limits?
e “In transit” messages?
e “Atrest’ messages?
e Back-pressure vs. buffering only
e Actor memory limits?
e All of the above: penalty for violating limits?

Actor Model Details

e Message delivery order
e (Causal vs. FIFO vs. no guarantee vs. other?
e Messages duplication allowed?
e Message loss allowed?

Actor Model Details

e Actor lifetime

e Do actors exist forever?

e Can actors crash?
e Can actors interact with non-actor computations?
e Byzantine/malicious actor behavior?

Enough!?

it is a good start. but there is more.

BEAM languages vs. Pony

20+ Dimensions of the Actor Model

Message Sending

Synchronous vs. Asynchronous
message sending

- BEAM: async
* Pony: async

SAME

Message Sending

Named Processes vs. Unnamed
Processes

. BEAM: named SIMILAR

- Pony: named

Message Sending

Message Destination

- BEAM: process
* Pony: actor

SAME

Message Sending

Typed vs. Untyped Messages

- BEAM: untyped
- Pony: typed

Message Recelving

Reliable vs. Unreliable Delivery

« BEAM: reliable’ish
- Pony: reliable

SIMILAR

Message Recelving

Message delivery order

- BEAM: any order
« Pony: FIFO only

Message Recelving

Causal message order guarantee

- BEAM: yes or no
» Pony: yes always

SIMILAR

Message Recelving

Blocking vs. Non-Blocking
message receive

- BEAM: yes
* Pony: no

Message Recelving

Time-Aware vs. Time-lgnorant

- BEAM: yes
* Pony: no

Scheduling

What schedules actors?

« BEAM: custom scheduler
« 1 scheduler/CPU core

« Pony: custom scheduler
« 1 scheduler/CPU core

Scheduling

Scheduler Overhead

- BEAM: {100’s} bytes/process,
{few} usec to create &
destroy

- Pony: 240 bytes/actor, {few}
usec to create & destroy

 Scheduling millions is fine

» Actors are cheap

Scheduling

Preemptive vs. Cooperative
Scheduling

- BEAM: Preemptive
» Pony: Cooperative

Scheduling

Actor priority schemes?

- BEAM: Yes, 4 levels
* Pony: No

Scheduling

Work stealing?

- BEAM: Yes

* Pony: Yes SAM E

Scheduling

Energy Conservation by Idle
Schedulers?

- BEAM: Yes
* Pony: Yes

SAME

Scheduling

Mailbox size limits?

- BEAM: No
* Pony: No

SAME

Scheduling

Maximum Heap Size?

- BEAM: No

- Pony: No SAME

Scheduling

- Actor Lifecycle

» Cheap vs. Cheap *SAME*
- Actor Crash?

* Yes vs. No

Scheduling

Back-pressure to reduce workload
of overloaded actors?

- BEAM: Yes -> No
* Pony: Yes

Theoretical Message Delivery Properties

5
N 2%

- Causal order: Yes
- *SIMILAR*

» - Message loss: 0%
- *SAME"*

» - Message duplication: 0%
- *SAME"

- Message reordering:

"WHOA!

Actors & the Outside World

Actor interaction with non-actors

. BEAM: yes

- Pony: yes, but... SlM | LAR

Byzantine Actors

Incorrect/Malicious Actors
Tolerated?

- BEAM: No
* Pony: No

I'/l/—— 4 -~\\‘I
)
'&,‘/

Review of Similarities by Category

e SAME
o 13

e SIMILAR
e 5

e WHOA!
e 8

WHOA! Summary

Msg Receiving: message reordering

Msg Receiving: blocking vs. non-blocking receive
Msg Receiving: time-aware vs. time-ignorant
Scheduling: preemptive vs. cooperative scheduling
Msg Sending: untyped vs. typed messages
Scheduling: actor priority schemes?

Lifecycle: actors crash?

Back-pressure for "overloaded" actors?

In Pony, one does not
simply call() a gen_server

ever.
| 1] ¥ 11 |

PP
s

In Pony, one does not
simply call() a gen_server

you cannot block awaiting for the reply.

In Pony, all messaging is
cast()-style

Good Stuff Not in the
"Actor Model" Basket

&

L=

Pony language & runtime safety guarantees 8.

Type safe
Memory safe
Exception safe
Data-race free
e All messaging is pass-by-reference
e Sharing data between actors is guaranteed safe
Deadlock free
e Type system is fully aware of actors & concurrency

If the Compiler Isn't Happy, Nobody's Happy

e Pony's compiler is FUSSY
e Far more than Erlang's or Elixir's compiler
e But it’s always right(*)
e Sois the Dialyzer
Type systems are powerful tools
Dialyzer finds bugs in BEAM code
Use Dialyzer to fix your bugs
Put Dialyzer into your workflow so you can’t ignore it

Pony compiles to target hardware CPU

e Erlang, Elixir, LFE, etc.
e Runs on BEAM VM with optional compilation to native
code via HIPE
e Pony
e Compiles to target CPU instructions via LLVM
toolchain
e JIT is available via LLVM
e DWARF symbols, “looks like C++” to debuggers and
profilers

Side-effect of safety: actors don't crash

e All errors must be handled explicitly
e “7?” syntax used to mark a "partial function”
e 'partial" = "may raise an error"
e Compiler enforced, of course
e No actor crashes => no need for BEAM’s links & monitors
to help manage failure

T
7y > \ o
/ P T
= 8

N\
I&yl

Per-Actor Heaps + Distributed GC

e Distributed GC across all actor heaps

e No "stop the world" GC

e Fully concurrent, sync-free, lock-free, and barrier-free
e Message passing maintains ref counts on shared objects

e Dead objects are reaped by creating/allocating object
e GC and Type System Co-Designed with ORCA protocol

e Actors are 1st class, GC’ed objects in the system

e Runtime halts when all actors are GC’ed/GC'able.

e ORCA works (on paper) across multiple machines

ORCA GC Comparison on pB’marks

72:20 S. Clebsch, J. Franco, S. Drossopoulou, A. M. Yang, T. Wrigstad, J. Vitek

Orca Erlang ca _ Gl

0.10
0.08
0.06
0.04

0.02

0.00 S —_—

Fig. 17. Responsiveness. X-axis: request ID, Y-axis: Jitter/difference between finishing time (seconds) of
subsequent requests. Java measurements are from a warmed-up VM and does not include JIT ing.

ORCA GC Comparison on pB’marks

Orca: GC and Type System Co-Design for Actor Languages
(c) rings (d) mailbox

le? Orca Erlang C4

le? O{CS . . . Erlang.) C4

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

>
>
'

w
'
w

=
'

Time (microsec)
o
L=

Tlmc (microsec)
'S

L

4 8 16 32 64 4 8 16 32 64

Bl mutatortime 8 mutator overhead B concurrentge N stw gc

Fig. 16. Strong scalability on 4-64 cores. (stw=stop-the-world.)

ORCA GC Comparison on pB’marks

Orca: GC and Type System Co-Design for Actor Languages

(a) trees (b) trees’
le# Orca ‘ hrlang) ¢s Orca . hrlang ' ' Cs
20

‘-. -
2 P T s
g? - é
B 5
& | E,
v ? v
| I I |
- -

.l-l Tz ll-__ Ill

4 16 32 64 4 8 16 32 64 4 8 16 32 64 4 16 32 64 4 B8 16 32 64 4 8 16 32 64

Fig. 16. Strong scalability on 4-64 cores. (stw=stop-the-world.)

Pony Is Not a Functional Language (PONY)(§.

e Pony is very imperative
e ... but the type system provides lovely safety properties

Pony Has Lambdas & More

e lambdas / unnamed functions
e map () & friends, hooray
e persistent data structures in the standard library

Pony Is Object-Oriented

e ... but not Java-style
e Not everything is an object
e You control the class hierarchy
e Has both structural & nominal subtyping
e Pony’s interface = structural typing

Pony Has Generic Types

// map over a List[A] to
// create a List[B]

fun box map[B: B] (
f: {(this->A!): B*}[A, B] box)
List[B] ref”

Pony Has Pattern Matching!

e match statement to match:
e Dbasic data types
e sub-/super-types in class hierarchy
e tuple element destructuring
e Function head matching is gone
e ... but will return again soon (I hope)

Pony |Is Open Source

e BSD-style license
e https://github.com/ponylang/ponyc/
e Target CPUs
e x86_64, ARM
e Target operating systems:
e Linux, Windows, OS X
e FreeBSD & DragonflyBSD (limited support)

Pony Is Young

The standard library is small
The open source community is small
Ecosystem of Pony language libraries & apps is small
"Get Stuff Done" development model
e Correctness > Performance > Simplicity > Consistency
> Completeness

Pony’s FFI to C/C++ ABI

e Easily interface to C & C++ ABI functions
e Runtime's requirements for memory & threads are modest
e Many Pony primitive data types map directly to target CPU
e I8, Il6, I32, I64, I128
e U8, Ule6, U332, U644, U128
e Array[U8] for contiguous unstructured bytes

Pony's Reference Capabilities

e Strong, static type checker is the price to pay for safety
e It’s a big mind shift to adjust to both:

e Mutable data (even if it is safe!)

e Pony’s type system (based on affine types)
e The end advantages:

e Zero runtime cost for safety

e Very quick GC

Get Involved!

Web: http://ponylang.org
GitHub: https://github.com/ponylang/ponyc/
Twitter: @ponylang
Freenode IRC: #ponylang
Mailing list info: https://pony.groups.io/g/user
Pester me about Erlang, Pony, and/or Wallaroo:
e Anytime here at the conference
e @slfritchie on Twitter
e slfritchie@ on gmail.com

http://ponylang.org
https://github.com/ponylang/ponyc/
https://pony.groups.io/g/user

Sources & Where to Look For More (BoNY)(¥.)

On the Actor Model: Source of microbenchmark graphs:
https://en.wikipedia.org/wiki/Actor_model S Clebsch, J Franco, S Drossopoulou, AM
https://en.wikipedia.org/wiki/Process_calculus Yang, T Wrigstad, J Vitek

https://en.wikipedia.org/wiki/
Actor_model_and_process_calculi
https://en.wikipedia.org/wiki/

“Orca: GC and type system co-design for
actor languages”. Proceedings of the ACM

Communicating_sequential_processes on Programming Languages 1 (OOPSLA), 72
https://uu.diva-portal.org/smash/get/
On Pony: diva2:1160319/FULLTEXTO1.pdf
http://blog.acolyer.org/2016/02/17/deny-
capabilities/ Sean Bean image:
« https://blog.acolyer.org/2016/02/18/ownership-

: New Line Cinema, The Fellowship of the
and-reference-counting-based-garbage- Ring, 2001

collection-in-the-actor-world/
https://www.youtube.com/watch? http://knowyourmeme.com/memes/one-

v=e019720ljGQ does-not-simply-walk-into-mordor
https://github.com/ponylang/ponyc/ https://memegenerator.net/Does-Not-
http://ponylang.org (also Pony logo source) Simply-Walk-Into-Mordor-Boromir

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Process_calculus
https://en.wikipedia.org/wiki/Actor_model_and_process_calculi
https://en.wikipedia.org/wiki/Communicating_sequential_processes
http://blog.acolyer.org/2016/02/17/deny-capabilities/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://www.youtube.com/watch?v=e0197aoljGQ
https://github.com/ponylang/ponyc/
http://ponylang.org/
https://uu.diva-portal.org/smash/get/diva2:1160319/FULLTEXT01.pdf
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir

