
The Wide World of Actors,
or,
Can I Have an Erlang Pony?

Code BEAM San Francisco
Friday, March 16, 2018

Scott Lystig Fritchie
Wallaroo Labs

Introducing Myself

● I am Scott Lystig Fritchie
● Currently at Wallaroo Labs
● Formerly of VMware Research, Basho, Gemini Mobile,

Caspian Networks, Sendmail, and UNIX sysadmin prior
● Former co-chair of ACM ICFP Erlang Workshop for 4 years

○ International Conference on Functional Programming
● @slfritchie at GitHub and Twitter
● I eat and cook a lot of Japanese food

One Slide About Wallaroo

● Wallaroo = data streaming processor
● Easy scaling of Python & Go processing logic

● Targets apps not well-served by Storm, Flink, Spark, …
● Very low latency = efficiency
● Very low jitter = predictable tail latencies
● Fast interface to foreign language interpreters (in C!)

● Wallaroo as great Erlang app?
● Sure, but …
● … it’s written in Pony

Outline of the Talk

● BEAM =:= Actors
● False!

● A Brief & Biased History of Programming
● Definition of the Actor Model
● 20+ Extra Dimensions to the Actor Model
● Actor implementations: BEAM languages vs. Pony
● Cool Pony Stuff Outside of the Actor Model

My Goals

● Better understanding of where the Actor Model came from.
● Many dimensions to design & build an Actor Model system.

● BEAM is an opinionated implementation.
● BEAM & Pony are quite similar

● … but the exceptions are big exceptions.
● Pony’s implementation of Actor Model might be better that

BEAM’s in some cases.
● Pony is interesting enough to learn more about.
● Type systems are amazing tools. Don’t ignore Dialyzer!

Programming History in 1 Bad Slide

● Programming is COOL!
● Writing & debugging programs is NOT EASY
● (Industry introduces timesharing & concurrency)

● (… programming languages invented …)
● (… structured programming invented …)

● Managing concurrency is DIFFICULT
● Managing concurrency + actual simultaneous execution

is WICKED HAHD

We must manage
complexity or else go
insane.

BEAM =:= Actors
false

The Actor Model

1. The actor is the fundamental unit of computation
2. An actor has its own private state: registers, memory, etc.
3. An actor can read & modify only its own private state

● It is private state: no other actor has any access
4. An actor can send a message to another actor
5. An actor can react to a message that was sent to it

● Message passing is the only communication
mechanism between actors

6. An actor can create a new actor

● Hoare (c)
1985

● Armstrong,
Virding,
Wikström,
Williams (c)
1993

Communicating Sequential Processes (CSP)

CSP + opinionated telecom
giant + research lab

equals Erlang

Let's get more specific
about what an actor
implementation might
really need

Actor Model Details

● Message sending:
● sync vs. async message sending
● named vs. unnamed processes
● message destination: process vs. channel

● 1:1?
● broadcast?
● other?

● typed vs. untyped messages

Actor Model Details

● Message receiving
● Reliable vs. unreliable delivery
● First in first out (FIFO) vs. causal vs. another order
● Blocking semantics?

● Block waiting for a message?
● Time-aware vs. time-ignorant

Actor Model Details

● How actors are scheduled to execute?
● When to start running an actor?
● When to stop running an actor

● Cooperative vs. preemptive scheduling
● Work stealing?

Actor Model Details

● Memory limits
● Channel/ambient/mailbox limits?

● “In transit” messages?
● “At rest” messages?

● Back-pressure vs. buffering only
● Actor memory limits?
● All of the above: penalty for violating limits?

Actor Model Details

● Message delivery order
● Causal vs. FIFO vs. no guarantee vs. other?
● Messages duplication allowed?
● Message loss allowed?

Actor Model Details

● Actor lifetime
● Do actors exist forever?
● Can actors crash?

● Can actors interact with non-actor computations?
● Byzantine/malicious actor behavior?

Enough!?
it is a good start. but there is more.

BEAM languages vs. Pony
20+ Dimensions of the Actor Model

Synchronous vs. Asynchronous
message sending

• BEAM: async
• Pony: async

Message Sending

SAME

Named Processes vs. Unnamed
Processes

• BEAM: named
• Pony: named

Message Sending

SIMILAR

Message Destination

• BEAM: process
• Pony: actor

Message Sending

SAME

Typed vs. Untyped Messages

• BEAM: untyped
• Pony: typed

Message Sending

WHOA!

Reliable vs. Unreliable Delivery

• BEAM: reliable’ish
• Pony: reliable

Message Receiving

SIMILAR

Message delivery order

• BEAM: any order
• Pony: FIFO only

Message Receiving

WHOA!

Causal message order guarantee

• BEAM: yes or no
• Pony: yes always

Message Receiving

SIMILAR

Blocking vs. Non-Blocking
message receive

• BEAM: yes
• Pony: no

Message Receiving

WHOA!

Time-Aware vs. Time-Ignorant

• BEAM: yes
• Pony: no

Message Receiving

WHOA!

What schedules actors?

• BEAM: custom scheduler
• 1 scheduler/CPU core

• Pony: custom scheduler
• 1 scheduler/CPU core

Scheduling

SAME

Scheduler Overhead

• BEAM: {100’s} bytes/process,
{few} usec to create &
destroy

• Pony: 240 bytes/actor, {few}
usec to create & destroy

• Scheduling millions is fine
• Actors are cheap

Scheduling

SAME

Preemptive vs. Cooperative
Scheduling

• BEAM: Preemptive
• Pony: Cooperative

Scheduling

WHOA!

Actor priority schemes?

• BEAM: Yes, 4 levels
• Pony: No

Scheduling

WHOA!

Work stealing?

• BEAM: Yes
• Pony: Yes

Scheduling

SAME

Energy Conservation by Idle
Schedulers?

• BEAM: Yes
• Pony: Yes

Scheduling

SAME

Mailbox size limits?

• BEAM: No
• Pony: No

Scheduling

SAME

Maximum Heap Size?

• BEAM: No
• Pony: No

Scheduling

SAME

• Actor Lifecycle
• Cheap vs. Cheap *SAME*

• Actor Crash?
• Yes vs. No

Scheduling

WHOA!

Back-pressure to reduce workload
of overloaded actors?

• BEAM: Yes -> No
• Pony: Yes

Scheduling

WHOA!

• Causal order: Yes
• *SIMILAR*

• - Message loss: 0%
• *SAME*

• - Message duplication: 0%
• *SAME*

• - Message reordering:
WHOA!

Theoretical Message Delivery Properties

WHOA!

Actor interaction with non-actors

• BEAM: yes
• Pony: yes, but…

Actors & the Outside World

SIMILAR

Incorrect/Malicious Actors
Tolerated?

• BEAM: No
• Pony: No

Byzantine Actors

SAME

Review of Similarities by Category

● SAME
● 13

● SIMILAR
● 5

● WHOA!
● 8

WHOA! Summary

● Msg Receiving: message reordering
● Msg Receiving: blocking vs. non-blocking receive
● Msg Receiving: time-aware vs. time-ignorant
● Scheduling: preemptive vs. cooperative scheduling
● Msg Sending: untyped vs. typed messages
● Scheduling: actor priority schemes?
● Lifecycle: actors crash?
● Back-pressure for "overloaded" actors?

In Pony, one does not
simply call() a gen_server

ever.

In Pony, one does not
simply call() a gen_server

you cannot block awaiting for the reply.

In Pony, all messaging is
cast()-style

Good Stuff Not in the
"Actor Model" Basket

Pony language & runtime safety guarantees

● Type safe
● Memory safe
● Exception safe
● Data-race free

● All messaging is pass-by-reference
● Sharing data between actors is guaranteed safe

● Deadlock free
● Type system is fully aware of actors & concurrency

If the Compiler Isn't Happy, Nobody's Happy

● Pony's compiler is FUSSY
● Far more than Erlang's or Elixir's compiler

● But it’s always right(*)
● So is the Dialyzer

● Type systems are powerful tools
● Dialyzer finds bugs in BEAM code
● Use Dialyzer to fix your bugs
● Put Dialyzer into your workflow so you can’t ignore it

Pony compiles to target hardware CPU

● Erlang, Elixir, LFE, etc.
● Runs on BEAM VM with optional compilation to native

code via HiPE
● Pony

● Compiles to target CPU instructions via LLVM
toolchain

● JIT is available via LLVM
● DWARF symbols, “looks like C++” to debuggers and

profilers

Side-effect of safety: actors don't crash

● All errors must be handled explicitly
● “?” syntax used to mark a "partial function”

● "partial" = "may raise an error"
● Compiler enforced, of course
● No actor crashes => no need for BEAM’s links & monitors

to help manage failure

Per-Actor Heaps + Distributed GC

● Distributed GC across all actor heaps
● No "stop the world" GC
● Fully concurrent, sync-free, lock-free, and barrier-free

● Message passing maintains ref counts on shared objects
● Dead objects are reaped by creating/allocating object

● GC and Type System Co-Designed with ORCA protocol
● Actors are 1st class, GC’ed objects in the system
● Runtime halts when all actors are GC’ed/GC'able.
● ORCA works (on paper) across multiple machines

ORCA GC Comparison on μB’marks

ORCA GC Comparison on μB’marks

ORCA GC Comparison on μB’marks

Pony Is Not a Functional Language

● Pony is very imperative
● … but the type system provides lovely safety properties

Pony Has Lambdas & More

● lambdas / unnamed functions
● map() & friends, hooray
● persistent data structures in the standard library

Pony Is Object-Oriented

● … but not Java-style
● Not everything is an object

● You control the class hierarchy
● Has both structural & nominal subtyping

● Pony’s interface = structural typing

Pony Has Generic Types

// map over a List[A] to
// create a List[B]

fun box map[B: B](
 f: {(this->A!): B^}[A, B] box)
: List[B] ref^

Pony Has Pattern Matching!

● match statement to match:
● basic data types
● sub-/super-types in class hierarchy
● tuple element destructuring

● Function head matching is gone
● … but will return again soon (I hope)

Pony Is Open Source

● BSD-style license
● https://github.com/ponylang/ponyc/
● Target CPUs

● x86_64, ARM
● Target operating systems:

● Linux, Windows, OS X
● FreeBSD & DragonflyBSD (limited support)

Pony Is Young

● The standard library is small
● The open source community is small
● Ecosystem of Pony language libraries & apps is small
● "Get Stuff Done" development model

● Correctness > Performance > Simplicity > Consistency
> Completeness

Pony’s FFI to C/C++ ABI

● Easily interface to C & C++ ABI functions
● Runtime's requirements for memory & threads are modest
● Many Pony primitive data types map directly to target CPU

● I8, I16, I32, I64, I128
● U8, U16, U32, U64, U128
● Array[U8] for contiguous unstructured bytes

Pony's Reference Capabilities

● Strong, static type checker is the price to pay for safety
● It’s a big mind shift to adjust to both:

● Mutable data (even if it is safe!)
● Pony’s type system (based on affine types)

● The end advantages:
● Zero runtime cost for safety
● Very quick GC

Get Involved!

● Web: http://ponylang.org
● GitHub: https://github.com/ponylang/ponyc/
● Twitter: @ponylang
● Freenode IRC: #ponylang
● Mailing list info: https://pony.groups.io/g/user
● Pester me about Erlang, Pony, and/or Wallaroo:

● Anytime here at the conference
● @slfritchie on Twitter
● slfritchie@ on gmail.cοm

http://ponylang.org
https://github.com/ponylang/ponyc/
https://pony.groups.io/g/user

On the Actor Model:

• https://en.wikipedia.org/wiki/Actor_model

• https://en.wikipedia.org/wiki/Process_calculus

• https://en.wikipedia.org/wiki/

Actor_model_and_process_calculi

• https://en.wikipedia.org/wiki/

Communicating_sequential_processes

On Pony:

• http://blog.acolyer.org/2016/02/17/deny-

capabilities/

• https://blog.acolyer.org/2016/02/18/ownership-

and-reference-counting-based-garbage-
collection-in-the-actor-world/

• https://www.youtube.com/watch?
v=e0197aoljGQ

• https://github.com/ponylang/ponyc/

• http://ponylang.org (also Pony logo source)

Sources & Where to Look For More
Source of microbenchmark graphs:

S Clebsch, J Franco, S Drossopoulou, AM
Yang, T Wrigstad, J Vitek

“Orca: GC and type system co-design for
actor languages”. Proceedings of the ACM
on Programming Languages 1 (OOPSLA), 72

https://uu.diva-portal.org/smash/get/
diva2:1160319/FULLTEXT01.pdf

Sean Bean image:

New Line Cinema, The Fellowship of the
Ring, 2001

http://knowyourmeme.com/memes/one-
does-not-simply-walk-into-mordor

https://memegenerator.net/Does-Not-
Simply-Walk-Into-Mordor-Boromir

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Process_calculus
https://en.wikipedia.org/wiki/Actor_model_and_process_calculi
https://en.wikipedia.org/wiki/Communicating_sequential_processes
http://blog.acolyer.org/2016/02/17/deny-capabilities/
https://blog.acolyer.org/2016/02/18/ownership-and-reference-counting-based-garbage-collection-in-the-actor-world/
https://www.youtube.com/watch?v=e0197aoljGQ
https://github.com/ponylang/ponyc/
http://ponylang.org/
https://uu.diva-portal.org/smash/get/diva2:1160319/FULLTEXT01.pdf
http://knowyourmeme.com/memes/one-does-not-simply-walk-into-mordor
https://memegenerator.net/Does-Not-Simply-Walk-Into-Mordor-Boromir

