
Two Testing Tools for the
Erlang Ecosystem

Kostis Sagonas

Some material is joint work with
Andreas Löscher

Stavros Aronis and Scott Lystig Fritchie

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

PropEr – proper.softlab.ntua.gr

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

PropEr: A property-based testing tool
Inspired by QuickCheck
Open source
Has support for
− Writing properties and test case generators

?FORALL/3, ?IMPLIES, ?SUCHTHAT/3, ?SHRINK/2,
?LAZY/1, ?WHENFAIL/2, ?LET/3, ?SIZED/2,
aggregate/2, choose2, oneof/1, ...

− Stateful (aka “statem” and “fsm”) testing
Fully integrated with types and specs
− Generators often come for free!

Extensions for targeted property-based testing

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

%% A sorting program, inspired by QuickSort
-module(demo).
-export([sort/1]).

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

Eshell V9.2.1 (abort with ^G)
1> demo:sort([]).
[]
2> demo:sort([17,42]).
[17,42]
3> demo:sort([42,17]).
[17,42]
4> demo:sort([3,1,2]).
[1,2,3]

Demo program

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

-module(demo).
-export([sort/1]).

-include_lib("proper/include/proper.hrl").

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

prop_ordered() ->
?FORALL(L, list(integer()), ordered(sort(L))).

ordered([]) -> true;
ordered([_]) -> true;
ordered([A,B|T]) -> A =< B andalso ordered([B|T]).

generator

A property for the demo program

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Testing the ordered property

Runs any number of “random” tests we feel like.
If all tests satisfy the property, the test passes.

$ erl -pa /path/to/proper/ebin
Erlang/OTP 20 [erts-9.2.1] [...] ...

Eshell V9.2.1 (abort with ^G)
1> c(demo).
{ok,demo}
2> proper:quickcheck(demo:prop_ordered()).
.......... 100 dots
OK: Passed 100 tests
true
3> proper:quickcheck(demo:prop_ordered(), 4711).
.......... 4711 dots
OK: Passed 4711 tests
true

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

-module(demo).
-export([sort/1]).

-include_lib("proper/include/proper.hrl").

-spec sort([T]) -> [T].
sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++ sort([X || X <- Xs, P < X]).

prop_ordered() ->
?FORALL(L, list(integer()), ordered(sort(L))).

prop_same_length() ->
?FORALL(L, list(integer()),

length(L) =:= length(sort(L))).

ordered([]) -> ...

Another property for the program

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

4> c(demo).
{ok,demo}
5> proper:quickcheck(demo:prop_same_length()).
.............!
Failed: After 14 test(s).
[1,3,-3,10,-3]

Shrinking (6 time(s))
[0,0]
false
6> proper:quickcheck(demo:prop_same_length()).
............!
Failed: After 13 test(s).
[2,-8,-3,1,1]

Shrinking (1 time(s))
[1,1]
false

sort([]) -> [];
sort([P|Xs]) ->

sort([X || X <- Xs, X < P])
++ [P] ++
sort([X || X <- Xs, P < X]).

Testing the same_length property

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Integration with simple types
%% Using a user-defined simple type as a generator
-type bf() :: binary() | 'apple' | 'banana' | 'orange'.

prop_same_length() ->
?FORALL(L, list(bf()),

length(L) =:= length(sort(L))).

7> c(demo).
{ok,demo}
8> proper:quickcheck(demo:prop_same_length()).
................!
Failed: After 17 test(s).
[banana,apple,<<134>>,banana,<<42,25,177>>]

Shrinking (2 time(s))
[banana,banana]
false

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Integration with complex types
%% Using a user-defined recursive type as a generator
-type bf() :: binary() | 'apple' | 'banana' | 'orange'.
-type tree(T) :: 'leaf' | {'node',T,tree(T),tree(T)}.

prop_same_length() ->
?FORALL(L, list(tree(bf())),

length(L) =:= length(sort(L))).

9> c(demo).
{ok,demo}
10> proper:quickcheck(demo:prop_same_length()).
..............!
Failed: After 15 test(s).
[{node,banana,{node,<<42>>,leaf,leaf},leaf},...]

Shrinking (2 time(s))
[{node,banana,{node,banana,leaf,leaf},leaf},
{node,banana,{node,banana,leaf,leaf},leaf}]

false

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

PBT testing of sensor networks
Sensor network:
Random distribution of UDB server and client nodes
Client node periodically sends messages to server node

Property to test:
Has X-MAC for any network a
duty-cycle > 25%?

(duty-cycle ::= % time the radio is on)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

User-defined generators

graph(N) ->
Vs = lists:seq(1, N),
?LET(Es, list(edge(Vs)), {Vs,lists:usort(Es)}).

edge(Vs) ->
?SUCHTHAT({V1,V2}, {oneof(Vs),oneof(Vs)}, V1 < V2).

A generator for random graphs of N nodes:

Great: We can generate random sensor networks!

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Node distances

Is there a network with N nodes where the max
distance to a sink node is greater than N/2?

On this graph, the maximum distance to sink is 4.

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Testing the max_distance property
prop_max_distance(N) ->

?FORALL(G, graph(N),
begin

D = lists:max(distance_to_sink(G)),
D < (N div 2)

end).

2> proper:quickcheck(demo:prop_max_distance(42)).
.......... 100 dots
OK: Passed 100 tests
true
3> proper:quickcheck(demo:prop_max_distance(42), 100000).
.......... 100000 dots
OK: Passed 100000 tests
true

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

• Write more involved (custom) generators

• Guide the input generation
using a search strategy, and
introducing a feedback-loop in the testing

Possible solutions

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

• Combines search techniques with PBT.
• Automatically guides input generation towards

inputs with high probability of failing.

• Gather information during test execution in the
form of utility values (UVs).

• UVs capture how close input came to falsifying a
property.

Targeted Property-Based Testing

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Targeted max_distance property
prop_max_distance(N) ->

?FORALL_SA(G, ?TARGET(#{gen => graph(N)},
begin

D = lists:max(distance_to_sink(G)),
?MAXIMIZE(D),
D < (N div 2)

end).
Utility
value

Now the prop_max_distance(42) property
fails consistently with only a few thousand tests!

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Random PBT
Average amount of tests: 1188
Average time per tests: 23.5s

Mean Time to Failure: 7h46m

Targeted PBT
Average amount of tests: 200
Average time per tests: 40.6s

Mean Time to Failure : 2h12m

Testing the X-MAC protocol

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Definitions for an abstract machine.

Test: Do these definitions fulfill a certain security criteria?

(Noninterference)

Cătălin Hriţcu et al. "Testing noninterference, quickly." Journal of Functional
Programming, 26 (2016).

Testing security properties

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Random PBT
Naive: generate random programs

ByExec: generate program step-by-step one instruction a time;
new instruction should not crash program

Random PBT

Naive ByExec

ADD 2234,08ms 312,97ms

LOAD 324028,34ms 987,91ms

STORE A timeout 4668,04ms

Testing security properties

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Targeted PBT
List: programs are a list of instructions; using the built-in list

generator for Simulated Annealing

ByExec: neighboring program: a program with one more
instruction

Random PBT Targeted PBT

Naive ByExec List ByExec

ADD 2234,08 312,97 319,86 68,49

LOAD 324028,34 987,91 287,23 135,52

STORE A – 4668,04 1388,09 263,94

Testing security properties

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

hand written; ca. 30 lines of additional code

1 line of code!

PBT Targeted PBT
Naive ByExec List ByExec

ADD 2234,08 312,97 319,86 68,49
LOAD 324028,34 987,91 287,23 135,52
STORE A – 4668,04 1388,09 263,94

Testing security properties

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Concuerror – concuerror.com

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

aka Systematic Concurrency Testing
A technique to detect concurrency errors or verify

their absence by exploring all possible ways that
concurrent execution can influence a program’s
outcome.

fully automatic
low memory requirements
applicable to programs with finite executions

Stateless Model Checking (SMC)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Assume that you only have one ‘scheduler’.
Run an arbitrary execution of the program...

Then:
Backtrack to a point where some other thread could

have been chosen to run…
From there, continue with another execution…

Repeat until all choices have been explored.

How SMC works

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

x := 1;
y := 1;
x := 1;
y := 1;

x := 2;
y := 2;
x := 2;
y := 2;

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

y := 1;y := 1;

x := 1;x := 1;

y := 2;y := 2;

x := 2;x := 2;

Correctness Property (at the end)Correctness Property (at the end)
assert(x == y);assert(x == y);

Exploration can stop early when a property is violated.

Initially: x = y = 0

Systematic exploration example

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

x := 1;
y := 1;
x := 1;
y := 1;

x := 2;
y := 2;
x := 2;
y := 2;

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

Correctness Property (at the end)Correctness Property (at the end)

assert((x + y) < 7);assert((x + y) < 7);

Exploration needs to visit the complete set of traces
for properties that hold.

Initially: x = y = 0

Systematic exploration example

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

A stateless model checker for Erlang that
systematically explores all possible behaviours of a
program annotated with some assertions, to
either detect concurrency errors

(in which case it reports the erroneous trace)
or verify their absence

(i.e., that the properties in the assertions hold)

Concuerror

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Literally explore “all traces”?? Too many!

Not all pairs of events are conflicting.

Each explored trace should be different.

Systematic ≠ Stupid

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Combinatorial explosion in the number of interleavings.

Initially: x = y = … = z = 0

Thread 1:
x := 1

Thread 2:
y := 1 …

Thread N:
z := 1

- Interleavings under naïve exploration: N!

- Interleavings needed to cover all behaviors: 1

Partial Order Reduction (POR)
Explore just a subset of all interleavings
Still cover all behaviors

Partial Order Reduction (POR)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

The exploration algorithm
… monitors conflicts between events
… explores additional interleavings as needed
… completely avoids equivalent interleavings

Dynamic: at runtime, using concrete data
Optimal:

explores only one interleaving per equivalence class
does not even initiate redundant ones

Optimal DPOR [POPL’14,JACM’17]

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

x := 1;
y := 1;
x := 1;
y := 1;

x := 2;
y := 2;
x := 2;
y := 2;

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

Optimal DPOR will not be explore the grey nodes.

Correctness Property (at the end)Correctness Property (at the end)
assert((x + y) < 7);assert((x + y) < 7);

Initially: x = y = 0

Optimal DPOR exploration

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Explore only a few traces based on some bounding
criterion.

E.g., number of times threads can be preempted,
delayed, etc.

Very effective for testing!

Not suitable for verification.

Bounding

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

x := 1;
y := 1;
x := 1;
y := 1;

x := 2;
y := 2;
x := 2;
y := 2;

With a preemption bound of 0,
the grey nodes will not be explored.

Initially: x = y = 0

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

Preemption bounded exploration

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

With a preemption bound of 1,
the grey nodes will not be explored.

x := 1;
y := 1;
x := 1;
y := 1;

x := 2;
y := 2;
x := 2;
y := 2;

Initially: x = y = 0

2,12,1

1,01,0

0,00,0

1,11,1

2,22,2

2,22,22,12,1

2,02,0

2,12,12,22,2

1,21,2

2,02,0

2,22,2

1,11,1

1,11,1 1,21,2

1,01,0

1,21,2 1,11,1

Preemption bounded exploration

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

A variant of master/slave replication.
Strict chain order:

Sequential read @ tail.
Linearizable read @ all.
Dirty read @ head or middle.

Chain replication [OSDI’04]

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Suppose chain of three servers:

Naive offline repair method:
1. Stop all surviving servers in the chain
2. Copy tail’s update history to the repairing node
3. Restart all nodes with the new configuration

A better repair method for CR systems places the repairing node
directly on the chain and reads go to (the old tail).

Chain repair

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Uses Chain Replication with three changes:
1. Responsibility for replication is moved to the client.

2. CORFU’s servers implement write-once semantics.

3. Identifies each chain configuration with an epoch #.
– All clients and servers are aware of the epoch #.
– The server rejects clients with a different epoch #.
– A server temporarily stops service if it receives a

newer epoch # from a client.

CORFU [SIGOPS’12,NSDI’17]

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Investigated methods for chain repair in CORFU
Method #1: Add to the tail

Engineers at VMWare (1)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Investigated methods for chain repair in CORFU
Method #2: Add to the head

Engineers at VMWare (2)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Initial model:

• Some (one or two) servers undergo a chain
repair to add one more server to their chain.

• Concurrently, two other clients try to write two
different values to the same key.

• While a third client tries to read the key twice.

Modeling CORFU in Erlang

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

• Servers and clients are modeled as Erlang
processes.

• All requests are modeled as messages.

Processes used by the model:
○ Central coordinator
○ CORFU log servers (2 or 3)
○ Layout server process
○ CORFU reading client
○ CORFU writing clients (2)
○ Layout change and data repair process

Modeling CORFU in Erlang (cont)

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Immutability:
Once a value has been written in a key, no other

value can be written to it.

Linearizability:
If a read sees a value for a key, subsequent reads

for that key must also see the same value.

Correctness properties

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

1. Add repair node at the tail of the chain.

2. Add repair node at the head of the chain.

3. Add repair node in the middle.
– Configuration with two healthy servers.
– Configuration with one healthy server which is

“logically split” into two.

Three repair methods

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Results in (old) Concuerror

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Conditional read
Avoid issuing read operations that are sure to not
result in violations.

Convert layout server process to an ETS table
(instead of a process).

Model refinements

Kostis Sagonas Two Testing Tools @ Code BEAM SF 2018

Method #3 (add repair node in the middle)
Concuerror verifies the method
– in 48 hours
– after exploring 3 931 412 traces.

Method #1 (add repair node in the tail)
Even without bounding, the error is found in just

19 seconds (212 traces).

Effect of model refinements

